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Abstract

Numerous machine learning and neural network models have successfully utilized web search

data to accurately forecast and provide warnings about influenza-like illness (ILI) rates across

different geographic locations. Most of these models rely on manually tuned parameters or

use the last segment of the training set as the validation set. However, the ILI rate trend

within a single flu season (from September 1st to August 31st) typically follows a near-normal

distribution, with different periods within the season potentially containing distinct informa-

tion. Consequently, using different periods as validation sets can influence parameter selection,

leading to varying model performance.

In this study, we will develop a three-layer feedforward neural network (FFNN) and validate five

parameters using six different validation set configurations, each comprising different periods.

The model will be applied to web search data from the United Kingdom for nowcasting and

forecasting ILI rates 14 and 21 days ahead. Model performance will be evaluated using Mean

Absolute Error (MAE) and correlation metrics across three consecutive flu seasons (2016-2017

to 2018-2019). The goal is to identify the optimal validation strategy for each of the three

distinct tasks.

In all tasks, models selected using validation strategies generally outperformed the baseline

that did not use validation strategies, except for the forecasting task during the 2017-2018 flu

season. In the nowcasting task, the best strategy, with a validation set covering the onset,

peak, and end periods of the last three years of the training set, reduced the mean absolute

error (MAE) by 38.4% compared to the baseline. It also showed an 8.2% improvement over the

strategy using the last 180 days of the training set for validation. For 14- and 21-day forecasts,

the strategy based on peak periods from the last three years of the training set performed best,

reducing MAE by 9.1% and 4.7%, respectively, compared to the 180-day validation strategy.
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1 | Introduction

1.1 Research Objective

Influenza, commonly known as the flu, is a serious respiratory illness caused by influenza

viruses. According to the World Health Organization (WHO), influenza remains a sig-

nificant threat and a strong candidate for causing pandemics. There are around a billion

cases of seasonal influenza annually, including 3 to 5 million cases of severe illness[1].

Beyond the immediate health impact, influenza outbreaks impose a substantial economic

burden due to lost productivity, increased healthcare costs, and societal disruptions[2].

These figures highlight the critical impact of influenza on global public health, necessi-

tating effective monitoring and control measures.

Given the significant threat posed by influenza, there is a growing interest in accurately

predicting ILI rates[3, 4, 5]. Traditional surveillance methods, such as those employed by

the Royal College of General Practitioners (RCGP) and the UK Health Security Agency

(UKHSA) in the United Kingdom, provide essential data on Influenza-Like Illness (ILI)

rates, representing the incidence of doctor consultations for ILI symptoms per 100,000

individuals in England. However, these methods are relatively slow to update, with

weekly reporting cycles that may not capture the dynamic nature of influenza spread in

real-time[6]. Furthermore, underreporting of cases-particularly those not resulting in a

medical consultation-can lead to an incomplete picture of the outbreak’s true scale[7].

In contrast, leveraging web search data offers a more timely, convenient, and cost-effective

means of gaining insights into the population’s health status[8]. This approach not only

allows for near-real-time monitoring but also captures a broader spectrum of health

conditions by including individuals who may not seek immediate medical attention[9].

Moreover, advancements in big data analytics and machine learning have shown promise

in enhancing the accuracy of influenza predictions by analyzing vast amounts of digital
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data[10, 11, 12]. These technological innovations are increasingly recognized as valuable

tools in complementing traditional surveillance systems and improving public health re-

sponse strategies.

In summary, existing literature demonstrates the significant potential of integrating web

search data with advanced machine learning models for influenza prediction. However,

these studies often lack detailed explanations of parameter selection and fail to employ

validation strategies to ensure the optimality of the chosen parameters. To address

this gap, this project aims to develop a model that incorporates dynamic validation and

optimization processes. We will systematically evaluate the impact of using different time

periods as validation sets to determine the optimal validation period, thereby achieving

the best-performing model.

The impact of using different time periods as validation sets on the model should not be

overlooked. Each time period encompasses distinct epidemiological characteristics; for

example, data from the early stages of an influenza outbreak differ significantly in infor-

mation density and patterns compared to data from the peak of the outbreak. Excluding

data from a specific time period from the training set and using it as a validation set

could significantly affect the model’s training outcomes. Therefore, comparing the effects

of using different time periods as validation sets is a topic worth exploring in depth. For

instance, using data from the peak of the flu season as the validation set might lead to

a model that is more focused on predicting extreme cases, whereas using data from the

early stages of the outbreak might enhance the model’s sensitivity to early warning signs.

By systematically evaluating how the choice of validation sets affects model performance,

this project will gain a deeper understanding of the role different validation strategies play

in model optimization. This will contribute to the development of more robust influenza

prediction models, providing more reliable tools for public health decision-making and

resource allocation, and ultimately making a significant contribution to the field of digital
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epidemiology.

In this project, we found that models using validation strategies outperformed the base-

line model in all tasks except for the 17-18 flu season forecasting task. In the nowcasting

task, the baseline modelâs MAE loss was 38.4% higher than that of the best-performing

Strategy 6, which incorporated the onset, peak, and end periods from the last three years

of the training set. Strategy 1, which used the last 180 days of the training set, serves

as the baseline validation strategy. In the nowcasting task, Strategy 6’s MAE was 8.2%

lower than that of Strategy 1. In the forecasting tasks for 14 and 21 days ahead, Strategy

3 (used peak periods from the last three years) performed the best, achieving the lowest

average MAE, with reductions of 9.1% and 4.7%, respectively, compared to Strategy 1.

1.2 Project Aims and Goals

Aims:

1. Advance epidemiological surveillance in England: Explore and identify the optimal

validation strategies for feedforward neural networks in nowcasting and forecasting

tasks by using web search data as input.

2. Enhance proficiency in machine learning algorithms: Deepen understanding and

mastery of machine learning algorithms, and further improve practical skills in

model training.

Goals:

1. Construct a Feedforward Neural Network (FFNN) Model: Build an FFNN model

for three tasks: nowcasting, 14-day forecasting, and 21-day forecasting. Systemat-

ically apply and evaluate different validation strategies across these tasks.

2. Compare and Validate Different Validation Strategies: Analyze and compare the

effects of different validation strategies on the FFNN model’s performance in each

3
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task, identifying the optimal validation strategy for each task.

1.3 Project Overview

Before training our machine learning models, we pre-processed the dataset to ensure its

suitability for experimentation. This process included data interpolation, smoothing, and

retaining only the queries most relevant to influenza.

The primary objective of this experiment was to identify the optimal validation strategy

for a model that uses web search data as input to nowcast or forecast ILI rates 14 or

21 days ahead. We constructed a three-layer Feedforward Neural Network (FFNN) and

optimized the model by selecting the best combination of parameters based on validation

loss. The parameters considered included the top N most relevant query search frequen-

cies (N ∈ {100, 200, 300, 400}), the input window length (7 or 14 days of top N query

search frequency), the number of units in each neural network layer, learning rate, batch

size, and other hyperparameters.

By comparing the performance of these various parameter combinations across different

validation sets, we identified the best-performing model for each validation strategy.

To ensure the robustness of our results, we repeated the experiments across 10 different

random seeds, allowing us to calculate the average performance and ultimately determine

the optimal validation strategy for this task.

1.4 Report Overview

In the subsequent chapters, the Background section will be introduced first. In this

chapter, I will explain in detail the definitions of web search data and Influenza-like

Illness (ILI), and review the related research in this field. Furthermore, I will explore

existing methods and findings on predicting ILI rates using web search data, thereby
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clarifying the background and motivation of this study.

The Methodology section will describe the data sources of this study and their specific

contents, detailing the data preprocessing steps, as well as the design and construction

of the neural network architecture. Additionally, I will discuss the validation strategies

set in this experiment.

In the Results and Analysis section, I will present and analyze the results of the nowcast-

ing experiments and the 14-day and 21-day ILI rate forecasting experiments conducted

in this study. By comparing the performance of different validation strategies in these

tasks, I will analyze the computational resources required and the performance across

different test seasons to identify the optimal validation strategy for each task.

In the Discussion section, I will first summarize the key results. Following this, I will dis-

cuss any limitations encountered during the project and suggest possible future directions

for further research or improvement.

In the Conclusion section, I will provide an overview of the entire project.
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2 | Background

In this chapter, I will introduce the definitions and research related to Web search data

and Influenza-like Illness (ILI). Additionally, I will discuss the models and validation

methods used for nowcasting and forecasting ILI rates with Web search data, thereby

clarifying the background, direction, and knowledge gaps addressed by this study.

2.1 Web Search Data

Web search data can be succinctly defined as the digital footprints generated by users’

queries on search engines. Beyond merely transmitting information, web search data

serves as a powerful tool for predicting future trends across various domains, including

economics, politics, and health. In this section, I will provide a detailed analysis of the

impact of web search data in these fields.

In the financial markets, web search data has shown significant and multifaceted impli-

cations. Research by Szczygielski et al.[13] demonstrates the influence of Google Search

Trends (GST) on stock markets. As a form of web search data, GST acts as an indica-

tor of market sentiment, attention, and uncertainty. It is notably correlated with stock

market returns and volatility. Typically, an increase in search volume signals impend-

ing significant price movements, potentially leading to decreased returns and increased

volatility. Thus, GST can be used to predict systematic market drivers and their impact

on market volatility. Furthermore, Aoki’s research[14] highlights that web search data

not only reflects public interest and behavior towards the economy but also provides

more timely forecasts of economic indicators compared to traditional metrics like GDP

and unemployment rates, which often lag by several months. The real-time nature of

search data allows it to quickly capture sudden changes in the economic environment,

offering timely economic forecasts and supporting decision-making processes.
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In the political realm, web search data has also demonstrated substantial impact. Camilo’s

research [15] reveals that since 2004, Google Trends has successfully predicted all election

outcomes in Canada and the United States. Additionally, Kassraie’s study [16] indicates

that when Google Trends data is analyzed in conjunction with Twitter data and validated

against actual election results, it can accurately reflect public interest and sentiment.

Web search data has further proven its significance in the health sector. For example,

Agarwal’s study [17] demonstrated that by analyzing data from the Baidu search engine,

researchers could predict whether users would visit medical facilities in the future based

on their search behavior. This finding underscores the potential of web search data in

forecasting healthcare service demand.

Across various domains, web search data has proven to be a valuable resource for forecast-

ing and understanding trends. Its ability to provide real-time insights and reflect public

sentiment makes it a powerful tool in contemporary research. Whether in finance, pol-

itics, or health, web search data enhances predictive models, supports decision-making,

and offers a deeper understanding of complex dynamics in the modern world.

2.2 Influenza-Like Illness

Influenza is a respiratory infectious disease caused by the influenza virus, typically charac-

terized by fever, cough, sore throat, muscle aches, headaches, and fatigue. The influenza

virus can spread through droplets and can easily propagate among people, especially

during the winter and early spring seasons. According to the WHO [1], it causes 290,000

to 650,000 respiratory deaths annually. Influenza can exacerbate symptoms of other

chronic diseases, and in severe cases, it can lead to pneumonia and sepsis. Individuals

with underlying medical conditions or severe symptoms should seek medical attention.

Influenza is closely related to Influenza-Like Illness, a group of respiratory infections that

exhibit similar symptoms to influenza. Although ILI symptoms such as fever, cough,
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and sore throat resemble those of influenza, they may be caused by other viruses, such as

rhinoviruses or parainfluenza viruses. The definition and monitoring of ILI are commonly

used in public health to help track the spread of influenza and similar illnesses.

Traditional methods of influenza surveillance primarily rely on data collected from health-

care facilities such as clinics, hospitals, and emergency rooms. For example, the syn-

dromic surveillance network coordinated by the U.S. Centers for Disease Control and

Prevention (CDC) largely depends on data gathered from various healthcare institutions

across the country. In the United Kingdom, data on ILI rates are primarily collected and

analyzed by two agencies: the Royal College of General Practitioners (RCGP) and the

UK Health Security Agency (UKHSA), based on reports of ILI symptoms from general

practitioner (GP) clinics.

However, these data have certain limitations. Firstly, some patients may not actively seek

medical attention when they contract influenza, leading to a potential underestimation

of the actual ILI rate. Additionally, in developing countries, limited healthcare resources

mean that only a small proportion of patients visit hospitals, resulting in less accurate ILI

rate data obtained from medical institutions. Furthermore, government-released official

ILI rate data often experiences delays, as these figures are compiled and published on a

weekly basis, typically 1 to 2 weeks after data collection. Therefore, analyzing web search

data related to ILI provides a more real-time understanding of ILI spread compared to

official governmental methods, and it also covers a broader population.

2.3 ILI Rate Prediction Using Web Search Queries

In this section, I will introduce nowcasting and forecasting models that utilize web search

data to predict ILI rates, along with the validation methods associated with these models.
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2.3.1 Nowcasting Models

Ginsberg et al.[9] first proposed the Google Flu Trends (GFT) model, which uses Google

search query data to predict influenza trends in real-time. The core idea of GFT is to

utilize the frequency of searches related to flu symptoms on the internet as an indica-

tor of flu activity. The research team selected flu-related keywords from Google search

data covering 50 states in the United States as potential indicators of flu activity and

constructed a linear regression model based on this data, comparing the selected search

query frequencies with the CDC-reported influenza-like illness (ILI) data.

The model was constructed using a four-fold cross-validation method, fitting four 96-

point subsets of 128 data points for each region to ensure the robustness and predictive

capability of the model. To validate the accuracy of the model, the research team com-

pared the ILI rates predicted by the GFT model with historical CDC data. Across nine

different regions, the GFT model achieved an average correlation of 0.90 with the CDC-

reported ILI percentages. Furthermore, in a separate validation conducted in Utah, the

model also demonstrated a correlation of 0.90 across 42 validation points.

Nevertheless, GFT faces some challenges. For instance, when the media extensively

reports on flu or related health issues, public search behavior may be influenced, leading

to biases in the model’s predictions. To address this issue, Lampos et al.[11] enhanced the

model’s resilience to noise by optimizing feature selection and regularization techniques,

thereby improving its stability across datasets from different seasons and regions.

In their study, the team first used an Elastic Net regression model to filter out flu-related

keywords from a large number of search queries, identifying these keywords as potential

indicators of flu activity. After selecting the relevant search keywords, these were fed

into a nonlinear regression framework based on Gaussian Processes (GP) to capture the

complex nonlinear relationships in the data. Furthermore, to enhance the model’s predic-

tive capability, the study integrated autoregressive elements, particularly the ARMAX
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model from the Autoregressive Moving Average (ARMA) series. This model not only in-

cluded the regression of past Influenza-Like Illness values but also incorporated seasonal

components targeting annual patterns, trained using maximum likelihood estimation.

Overall, the Elastic Net model achieved a Mean Absolute Percentage Error (MAPE) of

11.9% compared to 20.4% for the GFT model, while the GP model further reduced the

MAPE to 10.8%. Regarding the performance of autoregressive models, the AR+GFT

model achieved a MAPE of 10.2% with a 2-week lag; the AR+Elastic Net model reduced

the MAPE to 7.7% under the same lag; and the AR+GP model achieved the best MAPE

of 7.3% with a 2-week lag.

Lampos et al. [18] improved feature selection by using word2vec for word embeddings and

filtering noise. They used similarity scores S to exclude unrelated terms. The study also

introduced a hybrid approach, combining correlation-based feature selection with word

embeddings for optimization. Results showed that the correlation-based model (with

r > 0.4) outperformed the word embedding model, achieving a mean absolute error

(MAE) of 2.137 compared to 3.006. The hybrid method, with thresholds of r > 0.30 and

S > µS+σS, yielded the best performance, with a correlation of 0.913, an MAE of 1.880,

and a MAPE of 36.23%.

2.3.2 Forecasting Models

In Hickmann et al.’s study [19], Wikipedia page views related to influenza were used to

predict the ILI rate one week ahead. They primarily utilized CDC’s ILI report data and

collected access data from relevant Wikipedia articles like "Human Flu," "Influenza,"

and "Oseltamivir." The model was based on the SEIR (Susceptible-Exposed-Infected-

Recovered) differential equation model, simulating influenza transmission in the U.S.

Enhancements included incorporating seasonal variations and heterogeneity in contact

structures. The Kalman smoother (enKS) method was used to dynamically adjust model
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parameters with new ILI and Wikipedia data. The researchers compared their SEIR

model to a baseline "straw man model," which generated predictions based on average

and standard deviation of previous flu seasons. The SEIR model was more accurate in

the first half of the flu season, reducing Mahalanobis distance (M-distance) by up to

20%. However, the study also noted that the SEIR model had limitations during the

later stages, where the assumption of immunity caused rapid declines in predicted ILI

values, making it challenging to predict the season’s tail end. This highlights the need

for further improvements to enhance the model’s performance throughout the entire flu

season, particularly in predicting subsequent peaks.

In their study, Morris et al. [20] utilized Google Health Trends web search activity data

and historical influenza-like illness rates from the CDC to forecast flu trends using neural

network models. To enhance prediction accuracy, they incorporated Bayesian methods

to estimate the uncertainty of the model’s predictions. During data processing, they

analyzed the correlation and semantic similarity of search queries, selecting the most

relevant ones for model training, and standardized these queries to create a composite

score guiding the model inputs. Additionally, they interpolated the weekly ILI rate data

into daily data to align with the search frequency time series. The study developed three

neural network architectures: a Feedforward Neural Network (FF), a Simple Recurrent

Neural Network (SRNN) using Gated Recurrent Units (GRU), and an Iterative Recurrent

Neural Network (IRNN). A Bayesian layer was introduced in the final layer of these neural

networks to better capture the uncertainty in the model’s predictions. Cross-validation

and Bayesian optimization were used to find the optimal model parameters. The results

showed that the IRNN consistently outperformed the other models in predicting ILI rates

across different time horizons (e.g., 14 days, 21 days, and 28 days). Compared to the

traditional Dante model, the IRNN demonstrated an 11.93% higher skill score, 4.97%

lower MAE, and 5.96% higher correlation, highlighting its superior ability to capture ILI

rates.
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In their study, Wei et al. [21] utilized weekly ILI% data from the Chinese National

Influenza Center (CNIC) and daily search data for 30 influenza-related keywords from

the Baidu search platform, covering 31 provinces, to predict influenza-like illness rates

in China.During the data processing phase, the researchers first calculated the Pearson

correlation coefficient to assess the relationship between Baidu search queries and ILI

rates. Keywords with a correlation coefficient above 0.4 were selected for use in the

predictive model. Additionally, the researchers normalized the Baidu search index and

ILI% data to a range between 0 and 1 to facilitate more in-depth analysis and model

training.

The study employed a three-layer Long Short-Term Memory (LSTM) neural network

model. To prevent overfitting, the researchers applied L2 regularization and other tech-

niques. The model’s performance was validated by fine-tuning the model parameters

using the last year of the training set data to ensure it did not overfit. Moreover, they

expanded the dataset threefold through data augmentation, thereby enhancing the ro-

bustness of the training process. The results showed that the LSTM model, combined

with the Baidu search index, significantly improved the accuracy of ILI rate predictions

compared to models using only ILI rate data. In northern mainland China, the com-

bination of ILI% data with the "mask" keyword index (lagged by one week) provided

the best predictive performance, with an R2 of 0.9055 and a 16.75% reduction in RMSE.

In southern mainland China, the best results were achieved using a combination of the

"influenza name" keyword index with ILI% data, with an R2 of 0.75579 and a 4.20%

reduction in RMSE.

2.3.3 Summary

Overall, web search data and neural networks have been widely used to predict influenza-

like illness rates, demonstrating excellent performance and predictive capabilities. How-

ever, in reviewing existing studies, the selection of model parameters typically follows
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one of several approaches: manual tuning, cross-validation, or using the last year’s data

as a validation set. Given that different stages of a flu season (such as the early phase,

peak phase, and end phase of ILI activity) contain varying amounts and types of infor-

mation, choosing different periods of data as the validation set may significantly impact

parameter selection and, consequently, model performance. Therefore, in this project,

I will explore the effects of using different periods as validation sets to assess how var-

ious validation strategies influence model performance, aiming to optimize the model’s

predictive ability.
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3 | Methodology

In this section, I will provide a detailed presentation of the datasets used in this study,

the steps and methods of data preprocessing, the architecture of the neural networks,

and the validation strategies employed.

3.1 Dataset

In this study, we utilized a time series dataset spanning from August 2008 to September

2019. This dataset includes both weekly ILI rates and daily web search query frequencies.

The ILI rates were sourced from the Royal College of General Practitioners (RCGP)

and the UK Health Security Agency (UKHSA), representing the incidence of doctor

consultations for ILI symptoms per 100,000 individuals in England. Figure 3.1 displays

the interpolated daily ILI rates based on the weekly ILI data.

Additionally, we obtained 22,571 web search query frequencies through an academic

API provided by Google Health Trends for academic research purposes with a health-

oriented focus. These are a non-standardized version of the publicly available Google

Trends outputs. Examples of these queries are provided in Table 3.1. The search query

frequencies were normalized using min-max scaling, with detailed information mentioned

in Section 3.3.2. This normalization adjusts the search frequencies to a consistent range,

enhancing the reliability and comparability of the analysis.

3.2 Data Preprocessing

In this section, we introduce how the queries embedding job is done, how the query

frequency processed and ILI rate interpolation.
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3.2.1 ILI Rates Interpolation

We receive weekly ILI rate data, assuming that the weekly ILI rate represents the ILI

rate on Thursday of each week. We then use linear interpolation to generate the daily

ILI rate between each pair of Thursdays. The interpolation formula is as follows:

It = Iw +
Iw − Iw−1

7
× d (3.1)

where It represents the ILI rate on day t between the Thursday of week w − 1 and the

Thursday of week w, Iw represents the weekly ILI rate (considered as the ILI rate on

the Thursday of week w), and d represents the number of days between day t and the

Thursday of week w − 1. The interpolation result is shown in Figure 3.1.
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Figure 3.1: Daily influenza-like illness (ILI) rates in England from September 1, 2008, to
August 31, 2019, as reported by RCGP and UKHSA.

3.2.2 Query Embedding

We obtained a total of 22,570 search queries; however, not all of them are related to

influenza-like illness (ILI). Our approach involves first embedding these queries and then

calculating their cosine similarity with flu-related phrases.

15



University College London

To obtain the embeddings of the queries, we used the SBERT model, specifically the all-

MiniLM-L6-v2, a pre-trained sentence transformer model from the SentenceTransformers

Python library. This model, based on BERT’s MiniLM, employs a 6-layer Transformer

encoder and produces 384-dimensional embedding vectors as output. It has been exten-

sively trained on various datasets, including those with healthcare-related terminology,

ensuring high-quality sentence embeddings suitable for computing cosine similarity[4].

Next, we identified the most flu-related queries by calculating their cosine similarity with

seven flu-related phrases: ’flu’, ’fever’, ’flu medicine’, ’gp’, ’hospital’, ’flu symptoms’,

and ’influenza vaccine’. For each query, we computed a score by averaging the cosine

similarities with these seven phrases. A higher score indicates a higher probability that

the query is related to the flu. We then ranked these scores and selected the top 2,000

queries for further processing.

3.2.3 Query Frequency Smoothing

The daily search frequencies of queries are influenced by various factors, resulting in a

significant amount of short-term fluctuations and noise. By applying a moving average

smoothing process to the data, we can obtain a smoother query frequency trend, allowing

for a clearer observation of the long-term trend in query frequency. In this study, we use

the harmonic mean with a 14-day window to smooth the query frequencies:

ft =
ft +

1
2
ft−1 +

1
3
ft−2 + · · ·+ 1

14
ft−13

1 + 1
2
+ 1

3
+ · · ·+ 1

14

(3.2)

where ft represents the frequency on day t for a given query.

Figure 3.2 shows the original search frequency of the query "flu medicine" and the data

after smoothing.
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Figure 3.2: The search frequencies of "flu medicine" from September 1, 2016, to August
31, 2017.

3.3 Feedforward Neural Network

In this section, we will provide a detailed illustration of the neural network structure, the

training and testing data split, and the validation strategy settings.

3.3.1 Definition of Feedforward Neural Network

A feedforward neural network (FFNN) is one of the most fundamental architectures

in artificial neural networks. In this network, data flows from the input layer through

one or more hidden layers, and finally reaches the output layer. The data flow in an

FFNN is unidirectional, meaning there are no feedback connections, and information

only propagates forward, forming a feedforward pattern. Figure 3.3 illustrates a three-

layer FFNN, which is the model used in this project.

Structure
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Figure 3.3: Computation graph of the FFNN model. In this figure, W represents the
window size (W ∈ {7, 14}), and N denotes the number of selected top queries (N ∈
{100, 200, 300, 400}). The activation function σ is implemented using ReLU.

In an FFNN, the input signals start from the input layer and pass through the linear

transformations and nonlinear activation functions of the hidden layers, until the output

layer generates the final prediction. This process can be described using the following

equations:

For the neurons in the l-th layer, the relationship between the input and output is given

by:
z(l) = W(l)a(l−1) + b(l)

a(l) = σ(z(l))
(3.3)

where z(l) is the weighted input at the l-th layer, W(l) is the weight matrix of the l-th

layer, b(l) is the bias, a(l) is the activation value, and σ(·) is the activation function.

In an FFNN, the input layer receives external data, where each neuron represents a

feature variable. Thus, the number of neurons in the input layer corresponds to the

number of input features. The details of the input will be elaborated in Section 3.3.2.
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The hidden layers are situated between the input and output layers, and an FFNN can

have one or more hidden layers. Each hidden layer consists of several neurons that are

connected to the neurons in the previous layer through a trainable weight matrix. The

neurons in each hidden layer perform a weighted summation of the input signals, followed

by a nonlinear transformation through an activation function, which enables the network

to capture complex patterns in the data. In this project, I used three hidden layers and

employed the ReLU function as the activation function, i.e., σ(x) = ReLU(x). The ReLU

function is defined as follows:

ReLU(x) = max(0, x) (3.4)

The output layer is used to generate the final predictions. The number of neurons in

the output layer typically corresponds to the number of classes for classification tasks or

the dimensionality of the output for regression tasks. In my project, since the task is

to nowcast or forecast the ILI rate 14 or 21 days ahead, the output consists of a single

neuron. This neuron is connected to the last hidden layer through a ReLU activation

function.

Training Process

In the training process of an FFNN, the core task is to minimize the loss function (such

as mean squared error or cross-entropy; in this project, MAE Loss is used) to adjust the

weights and biases of the network. The training steps are as follows:

First, the output of the network is computed by propagating the input data through each

layer according to equations 3.3 and 3.4. The loss value L(y, ŷ), which quantifies the

difference between the predicted and true values, is then calculated, where ŷ represents

the network’s predicted output and y represents the true labels. The function L can

represent various types of loss functions, such as Mean Absolute Error (MAE) or Mean
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Squared Error (MSE). In my project, I used the MAE loss, which is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (3.5)

where yi is the true value, ŷi is the predicted value, and n is the number of samples. MAE

measures the average magnitude of errors in a set of predictions, without considering their

direction.

Next, backpropagation is used to compute the gradients of the loss function with respect

to each parameter, i.e., ∂L
∂W(l) and ∂L

∂b(l) . These gradients are used to update the weights

and biases according to the following rules:

W(l) ←W(l) − η
∂L

∂W(l)

b(l) ← b(l) − η
∂L

∂b(l)

(3.6)

where η is the learning rate.

In my project, I employed the Adam optimizer [22], which is a variant of gradient descent

with adaptive learning rates. The Adam optimizer combines the ideas of momentum and

RMSProp, updating the weights and biases according to the following equations:

mt = β1mt−1 + (1− β1)∇L(W(l))

vt = β2vt−1 + (1− β2)(∇L(W(l)))2

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

W(l) ←W(l) − ηm̂t√
v̂t + ϵ

(3.7)

where β1 and β2 are the decay rates for the moving averages of the gradient and its

square, respectively, and ϵ is a small constant added for numerical stability.
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3.3.2 Implementation of Feedforward Neural Network

Input

We utilized the top 2000 query frequencies based on the methodology described in Section

3.2.2. To identify the most correlated queries, we calculated the correlations between

query frequencies and ILI rates using the last five years of training data. From this, we

selected the top N related queries, where N ∈ {100, 200, 300, 400}.

The 2009 H1N1 flu pandemic significantly influenced certain queries, such as "swine

flu," resulting in high correlations with ILI rates during that period. However, including

data from 2009 would disproportionately rank such queries high in correlation, despite

their decreased relevance to recent flu trends. To address this, we excluded 2009 data and

used only the most recent five years of training data to ensure the selected queries remain

relevant to current flu trends. As shown in Table 3.1, this approach helps maintain the

relevance of the identified queries.

The input vector i of the neural network consists of the top N query frequencies over the

latest W days (W ∈ {7, 14}): i = [qt,qt−1, . . . ,qt−W+1], where each qt represents the

selected query frequencies for day t.

From Figure 3.2, the query searching frequency spans a wide range, which can lead to

gradient vanishing or exploding issues in the neural network. Therefore, I scaled the

training data using the min-max method. The scaling is performed using the following

formula:

q′ =
q−min(q)

max(q)−min(q)
(3.8)

where q represents the original query frequencies and q′ represents the scaled query

frequencies. To prevent data leakage and improve the model’s predictive accuracy and

generalization ability, I used the minimum and maximum values obtained from the train-

ing data to scale the validation and test data. Specifically, the scaled data is obtained
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Top 50 using All Training Data Top 50 using Last 5 Years
’flu treatment’, ’flu symptoms nhs’, ’nhs
flu symptoms’, ’pregnancy and flu’, ’flu
pregnancy’, ’pregnancy flu’, ’flu and preg-
nancy’, ’flu contagious’, ’symptoms flu’,
’flu symptoms’, ’symptoms of flu’, ’flu in-
fection’, ’flu symptoms uk’, ’flu how long’,
’how long flu’, ’flu symptom’, ’baby flu’,
’treatment for flu’, ’pregnant flu’, ’incu-
bation period for flu’, ’flu pregnant’, ’flu
signs’, ’flu in babies’, ’the flu symptoms’,
’flu in pregnancy’, ’symptoms of swine
flu’, ’signs of flu’, ’symptoms swine
flu’, ’swine flu symptoms’, ’flu recov-
ery’, ’winter flu’, ’flu in children’, ’flu in-
cubation period’, ’i have flu’, ’nhs direct
flu’, ’flu last’, ’flu cough’, ’signs of swine
flu’, ’flu pain’, ’cough flu’, ’flu incuba-
tion’, ’flu contagious period’, ’swine flu
treatment’, ’flu symptom checker’, ’flu
virus symptoms’, ’flu symptoms in chil-
dren’, ’flu complications’, ’flu symptoms
last’, ’cure flu’, ’flu cure’

’flu symptoms’, ’symptoms flu’, ’flu how
long’, ’flu virus’, ’virus flu’, ’how long flu’,
’symptoms of flu’, ’flu last’, ’pneumonia’,
’cold cough’, ’colds’, ’how long does flu
last’, ’flu and cold’, ’flu pain’, ’flu con-
tagious’, ’cold and flu’, ’cold virus’, ’flu
cold’, ’cold flu’, ’the flu symptoms’, ’bad
cold’, ’cold and cough’, ’cold’, ’nhs cold’,
’cold nhs’, ’flu temperature’, ’cough and
cold’, ’flu infection’, ’i have cold’, ’a cold’,
’difference between cold and flu’, ’cough
flu’, ’is flu contagious’, ’flu cough’, ’how
long does the flu last’, ’fever flu’, ’flu
fever’, ’coughing’, ’a cough’, ’flu treat-
ment’, ’flu remedies’, ’flu virus symptoms’,
’cough medicine’, ’flu incubation’, ’i have
a cold’, ’get rid of flu’, ’flu headache’, ’got
flu’, ’influenza’

Table 3.1: Top 50 queries using 2016-2017 flu season training data vs. recent 5 years
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using:

q′ =
q−min(qtrain)

max(qtrain)−min(qtrain)
(3.9)

where q represents the original query frequencies, q′ represents the scaled query frequen-

cies, and min(qtrain) and max(qtrain) are the minimum and maximum values from the

training data, respectively.

Model Training and Testing

Due to the influence of the COVID-19 pandemic starting in December 2019, the ILI

rates during the pandemic are not accurate. Therefore, in this experiment, we use the

flu seasons from 2016-2017, 2017-2018, and 2018-2019 (spanning from September 1st

to August 31st of the following year) as the three test datasets. The training dataset

includes data from September 1st, 2008, up to the day before the first test set begins.

We use an early stopping method to find the best validation loss during the training

process. First, we train the model for 20 epochs, then we start the early stopping method

with a patience of 5. To get the best validation loss, when the model stops at epoch n,

we choose to use the model trained by epoch n − 5 with the best validation loss. The

advantage of using early stopping is that it helps prevent overfitting by halting training

when the model’s performance on the validation set stops improving. This ensures that

the model generalizes better to new, unseen data by selecting the point where it performs

best on the validation set rather than continuing to train and potentially overfitting to

the training data [23].

3.3.3 Validation Strategy

This section will outline the definitions of the onset, outset, and peak of a flu season, as

well as the validation strategies for our models.

Onset, Outset, and Peak
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To simplify the explanation and illustration, we will first define the validation period.

For model validation, we select data from the last three years of the training dataset,

considering these three years as the validation period.

Onset and outset refer to the start and end of each flu season, respectively. We use

the mean and standard deviation of the five years preceding the validation period to

estimate the onset and outset thresholds. At the beginning of the flu season, there may

be fluctuations around the threshold. Therefore, we define the onset day as the first day

when the ILI rates remain above the threshold for 14 consecutive days. The outset day

is defined as the last day when the ILI rates cross the threshold for that flu season. The

threshold is calculated using the equation:

threshold = mean− 0.25× std (3.10)

where std stands for standard deviation. Both mean and std are calculated from the

data of the five years preceding the validation period.

The peak is defined as the highest ILI rate during the flu season.

Using the methods described above, Figure 3.4 illustrates the onset and outset thresholds

for each validation period, and Table 3.2 provides detailed information on the onset, peak,

and outset dates for each test season.

Validation Strategies

This section details the validation strategies used in the experiments.

The goal of these validation strategies is to identify the best approach for validating

hyperparameter choices, thereby improving the model’s performance compared to random

data selection. The days used for validation consists of 180 days, selected according to

different strategies.
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Figure 3.4: Thresholds for the validation period for each test flu season (September 1 to
August 31 of 2016-2017, 2017-2018, and 2018-2019).

To clearly describe the validation methods, we define a 60-day window as the period

encompassing the 29 days before, the day of, and the 30 days after a specified day.

Here are the six strategies used in this experiment:

1. Utilize the last 180 days of the training dataset.

2. For each of the three flu seasons in the validation period, use a 60-day window

centered around the onset day.

3. Use a 60-day window centered around the peak day for each of the three flu seasons

in the validation period.

4. Use a 60-day window centered around the outset day for each of the three flu seasons

in the validation period.

5. For the validation period, consider the following specific windows for each flu season:

• For the first flu season: use a 60-day window centered around the onset day.

• For the second flu season: use a 60-day window centered around the peak day.

• For the third flu season: use a 60-day window centered around the outset day.
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Test Season Onset Date Peak Date Outset Date

2016-2017
2016-09-01 2016-12-15 2017-02-28
2017-11-01 2018-01-15 2018-03-31
2018-10-01 2018-12-15 2019-02-28

2017-2018
2017-09-01 2017-12-15 2018-02-28
2018-11-01 2019-01-15 2019-03-31
2019-10-01 2019-12-15 2020-02-28

2018-2019
2018-09-01 2018-12-15 2019-02-28
2019-11-01 2020-01-15 2020-03-31
2020-10-01 2020-12-15 2021-02-28

Table 3.2: Detailed onset, peak, and outset dates of validation period for each test flu
season.

6. For the validation period, consider the following alternative windows for each flu

season:

• For the first flu season: use a 60-day window centered around the outset day.

• For the second flu season: use a 60-day window centered around the peak day.

• For the third flu season: use a 60-day window centered around the onset day.

The reason most strategies use data around the onset day, outset day, or peak day is

that these three days are the most critical in a flu season. The onset day marks the

beginning of the increase in ILI rates and the start of the flu pandemic. The peak day is

when the ILI rate reaches its highest value, indicating the peak of the flu activity. The

outset day signifies the end of the flu pandemic as ILI rates start to level off. Using

days around these key points helps capture the significant trends and variations in ILI

rates, providing a robust basis for validation. This approach ensures that the model is

effectively validated against the most relevant and impactful periods of flu activity.

Validated Hyperparameters

We provided various choices of hyperparameters for the model to validate and select the
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best one for the test flu season. Hyperparameters such as the number of units in the

neural network layers, learning rate, and batch size were optimized using Grid Search.

Grid Search is a systematic method for hyperparameter optimization, aimed at finding

the best combination of hyperparameters within a defined search space. Specifically,

Grid Search exhaustively searches through all possible values of each hyperparameter

to form a "grid" of combinations. It then trains the model for each combination and

evaluates its performance. Ultimately, Grid Search selects the combination that yields

the best performance on the validation set or through cross-validation as the final model

configuration.

Additionally, we evaluated the model’s performance across different top N queries for

input and various window sizes W for input days. The detailed choices are listed in

Table 3.3.

Hyperparameter Choices

units_1 [50, 100]
units_2 [25, 50]
units_3 [25, 50]

learning_rate [1e− 4, 1e− 5]
batch_size [14, 28, 56]

N [100, 200, 300, 400]
W [7, 14]

Table 3.3: Choices of Hyperparameters. units_n denotes the number of units in layer n
of the feedforward neural network. N represents the top N related queries based on the
correlations mentioned in Section 3.2.2. W denotes the use of the latest W days’ top N
queries as input.
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4 | Results and Analysis

This chapter presents and analyzes the experimental results for nowcasting and fore-

casting the ILI rate 14 and 21 days ahead. The experiments were conducted using ten

different random seeds {1024, 2048, 4096, 8192, 16384, 15510, 1854, 18296, 16652, 11085}.

The analysis begins with a comparison of the performance of different validation strate-

gies against a baseline model. The baseline model uses default parameters, including the

search frequencies of the top 200 queries, a window size of 14 days, 100 units in the first

layer, 50 units in the second layer, 50 units in the third layer, a learning rate of 1e-4, and

a batch size of 28. Given that previous studies [21, 20] have used the last several days of

the training set as the validation set, I adopt a similar approach. Specifically, I use the

first validation strategy (using the last 180 days of the training data) as a benchmark to

compare with other validation strategies. Ultimately, my goal is to identify the optimal

validation strategy among all the strategies considered.

4.1 Nowcasting

The detailed results of the nowcasting experiment are presented in Table 4.1. In this

table, MAE and ρ represent the averages of the best validation loss models across 10

different random seeds. The "Baseline" in Table 4.1 refers to the model with default

parameters. Analyzing the results, it is evident that the Baseline model performs the

worst across all three flu seasons. In the 2016-17 flu season, the best MAE achieved

with a validation strategy is 1.475, while the Baseline model’s best performance is 2.196,

which is 48.9% higher than the best validation result. In the 2017-18 flu season, the best

MAE using a validation strategy is 2.862, compared to 3.642 for the Baseline model,

indicating an increase of 27.3%. Similarly, for the 2018-19 flu season, the best MAE with

a validation strategy is 1.883, while the Baseline model achieves 3.366, which is 78.8%

higher than the best validation result.
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Strategy
16-17 Flu Season 17-18 Flu Season 18-19 Flu Season

MAE ρ MAE ρ MAE ρ

Baseline 2.196 0.951 3.642 0.937 3.366 0.890

1 1.674 0.952 2.862 0.960 2.701 0.903

2 1.475 0.968 3.182 0.945 2.334 0.924

3 1.567 0.954 3.458 0.968 2.252 0.918

4 1.759 0.954 3.139 0.955 2.919 0.884

5 1.928 0.952 3.365 0.946 2.303 0.916

6 1.743 0.954 3.021 0.972 1.883 0.937

Table 4.1: Detailed Performance of Different Validation Strategies and Window Sizes
Across Three Flu Seasons. The table shows the mean absolute error (MAE) and corre-
lation (ρ) for each validation strategy in the 16-17, 17-18, and 18-19 flu seasons for the
nowcasting task. The best performance in each season is highlighted in bold and with a
green background.

Then, I calculated the average performance over three flu seasons for each strategy and

the baseline model. The results are presented in Table 4.2. In this table, MAE and ρ

represent the averages of the best validation loss models across 10 different random seeds,

further averaged over three test flu seasons. It is evident from the table that Strategy 6

performed the best, achieving the lowest MAE and the highest correlation. Additionally,

the baseline model shows the worst performance overall, highlighting the critical role of

selecting an effective validation strategy for identifying the best model for the nowcasting

task. In the following section, I will conduct a detailed comparison and ranking of each

validation strategy across the three flu seasons.

4.1.1 Ranking of Validation Strategies

In this section, I will present a ranking of the validation strategies used for each test

flu season. The ranking is primarily based on MAE loss. In cases where strategies have
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Strategy Average MAE Average ρ

Baseline 3.068 0.926

1 2.399 0.940

2 2.330 0.946

3 2.426 0.947

4 2.426 0.931

5 2.532 0.938

6 2.216 0.954

Table 4.2: Average Performance of 3 Flu Seasons Across Different Validation Strategies
for Nowcasting Task

similar MAE loss, the average correlation is used as a secondary criterion. If the null

hypothesis is that the difference in correlation is not significant, and the p-value supports

this, the strategies are considered tied. If the difference in correlation is significant, the

strategies are ranked accordingly.

2016-2017 Flu Season

Based on the observations from Table 4.1, Strategy 2 achieved the best MAE (Mean

Absolute Error) and the highest correlation during the 2016-17 flu season. Compared to

Strategy 2, Strategy 1’s MAE was 13.5% worse than the best MAE, and its correlation

was 0.017 lower than the best correlation.

To further evaluate the performance of each validation strategy, a comparison and ranking

were conducted across different flu seasons. The ranking, based on MAE loss, is as follows:

from best to worst, S2, S3, S1, S6, S4, and S5. Since the experiments were conducted

using ten random seeds, a t-test was applied to the test MAE loss results to statistically

compare the strategies and assess their degree of similarity. The results of the t-tests,

summarized in Table 4.3, show the statistical significance of the pairwise differences in
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Strategy S1 S2 S3 S4 S5 S6

S1 - 0.244 0.507 0.641 0.089 0.622

S2 0.244 - 0.559 0.122 0.004 0.060

S3 0.507 0.559 - 0.269 0.012 0.173

S4 0.641 0.122 0.269 - 0.281 0.918

S5 0.089 0.004 0.012 0.281 - 0.086

S6 0.622 0.060 0.173 0.918 0.086 -

Table 4.3: Pairwise p-values from t-tests between six different strategies based on test
MAE loss for the 2016-17 flu season for nowcasting task. Red indicates significant differ-
ences (p < 0.05).

MAE loss between the strategies. Overall, only Strategy 2 and Strategy 5 exhibited

significant differences in MAE loss, while the other strategies showed high similarity.

Therefore, based on the MAE loss, Strategy 2 should be ranked first, and Strategy 5

should be ranked last. The remaining strategies are ranked based on their correlation

values.

Thus, the final ranking of the validation strategies for the nowcasting task in the 2016-17

flu season is as follows:

1. S2

2. S3, S4 and S6 (tied)

3. S1

4. S5

2017-2018 Flu Season

In Table 4.1, we observe that Strategy 1 achieved the lowest MAE loss, with a value

of 2.862, while Validation Strategy 6 achieved the best correlation, reaching 0.972. The

results of the t-tests, presented in Table 4.4, indicate that there are significant differences
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Strategy S1 S2 S3 S4 S5 S6

S1 - 0.053 0.035 0.298 0.024 0.398

S2 0.053 - 0.306 0.869 0.385 0.391

S3 0.035 0.306 - 0.352 0.755 0.135

S4 0.298 0.869 0.352 - 0.448 0.674

S5 0.024 0.385 0.755 0.448 - 0.147

S6 0.398 0.391 0.135 0.674 0.147 -

Table 4.4: Pairwise p-values from t-tests between six different strategies for the 2017-18
flu season based on MAE loss for nowcasting task. Red indicates significant differences
(p < 0.05).

between Strategy 1 and Strategies 3 and 5. Therefore, Strategy 1 is ranked first. Since

there is no significant difference between Strategies 3 and 5, they are ranked based on

their correlation values. Strategy 3 has a correlation of 0.968, while Strategy 5 has a

correlation of 0.946, placing Strategy 3 second to last and Strategy 5 in the last position.

Next, the remaining strategies are ranked based on their correlation values, resulting in

the following ranking for the performance of each validation strategy in the 2017-18 flu

season:

1. Strategy 1

2. Strategy 6

3. Strategy 4

4. Strategy 2

5. Strategy 3

6. Strategy 5

2018-1019 Flu Season
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Firstly, by analyzing Table 4.1, we observe that Strategy 6 performed the best, with the

lowest MAE loss of 1.883 and a correlation of 0.937. Its MAE was 30.2% better than

Strategy 1, and its correlation was 0.034 higher than that of Strategy 1.

The t-test results, shown in Table 4.5, indicate that there are significant differences

between Strategy 6 and Strategies 1, 2, and 4. Furthermore, Strategy 4 shows significant

differences with Strategies 2, 3, 5, and 6. Based on their average MAE loss, we conclude

that Strategy 6 had the best performance, while Strategy 4 performed the worst, and

Strategy 1 ranked second to last, with Strategy 2 ranking third to last.

For the remaining strategies, we rank them based on their correlation values, placing

Strategy 3 ahead of Strategy 5. Therefore, the final ranking is as follows:

1. Strategy 6

2. Strategy 3

3. Strategy 5

4. Strategy 2

5. Strategy 1

6. Strategy 4

Summary

Based on the above rankings, we can conclude that Strategy 6 performed the best, consis-

tently ranking in the top two across all three flu seasons. In contrast, Strategy 5 showed

the weakest performance, ranking last in two of the seasons. The performance of the

other strategies was inconsistent and varied across the different flu seasons.
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Strategy S1 S2 S3 S4 S5 S6

S1 - 0.068 0.060 0.327 0.087 6.85e-05

S2 0.068 - 0.749 0.025 0.904 0.033

S3 0.060 0.749 - 0.022 0.855 0.123

S4 0.327 0.025 0.022 - 0.031 1.32e-4

S5 0.087 0.904 0.855 0.031 - 0.078

S6 6.85e-05 0.033 0.123 1.32e-4 0.078 -

Table 4.5: Pairwise p-values from t-tests between six different strategies for the 2018-19
flu season based on MAE loss for nowcasting task. Red indicates significant differences
(p < 0.05).

4.1.2 Parameter Selection Across Different Flu Seasons

In Table 4.6, we present the average hyperparameters selected across different flu seasons

for the nowcasting task. The table shows that, except for the query number (QN), other

parameters such as batch size (BS), learning rate (LR), and the number of units in the

neural network layers remain relatively stable across the flu seasons.

For the 17-18 flu season, there is a noticeable increase in the number of queries compared

to the 16-17 flu season and 18-19 flu season. Upon examining Figure 3.1, we observe

that the flu peak during the 17-18 season was significantly higher than in the other

seasons. This unusually high peak suggests increased variability during that period. The

elevated peak and greater fluctuations likely required the model to capture more complex

patterns, which is why a higher number of queries was necessary to accurately reflect the

dynamic trends in flu transmission. Additionally, the increase in query numbers could

be attributed to the availability of more comprehensive and higher-quality data during

the 17-18 flu season.
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Season W BS LR Units1 Units2 Units3 N

16-17 11.67 38.50 7.8e-5 70.83 38.75 40.00 265.00
17-18 10.61 37.57 8.4e-5 78.33 39.17 34.17 320.00
18-19 9.45 36.17 9.2e-5 74.17 40.42 40.42 246.67

Table 4.6: Averaged Hyperparameters by Season for nowcasting task. WS stands for
window size, BS for batch size, LR for learning rate, Units1/2/3 represent the number
of units in the first, second, and third layers, and QN for the query number.

4.2 Forecasting 14 Days Ahead

In this section, I will conduct a comparative analysis between the models using validation

strategies and the baseline model. Additionally, I will rank the performance of these

models on the test flu season based on different validation strategies and analyze the

parameter selection.

Table 4.7 presents the average of the best performances for each validation strategy across

different random seeds. From this table, we can observe that Strategy 3 performed the

best during the 16-17 flu season, with a minimum MAE loss of 2.204, which is 19.0%

better than the Baseline model. Additionally, it achieved a correlation of 0.890, which is

0.012 higher than the Baseline model.

However, during the 17-18 flu season, we see that the Baseline model significantly out-

performs all validation strategies. Its MAE loss is 21.8% lower than that of Strategy 5,

which had the best MAE loss, and its correlation is 0.085 higher than that of Strategy 6,

which had the best correlation. This discrepancy could be due to the higher peak in the

17-18 season, where the parameter set that performed best on the validation set did not

generalize well to the 17-18 test flu season, resulting in the model missing the optimal

performance for that season.

For the 18-19 flu season, Strategy 3 had the best MAE loss of 2.952. In contrast, the

Baseline model performed poorly in this season, with an MAE loss 2.595 times higher

35



University College London

than that of Strategy 3. Its correlation was also lower than that of Strategy 2 by 0.052.

Based on these results, we can conclude that although the Baseline model performed

better than all models selected through validation strategies during the 17-18 flu season,

its performance fluctuated significantly. In forecasting tasks, while using a validation

strategy might not always yield the best-performing model on the test set, it helps ensure

prediction stability across most seasons, especially those with smoother trends. Only

during volatile seasons, like 17-18, might the performance deviate.

Strategy
16-17 Flu Season 17-18 Flu Season 18-19 Flu Season

MAE ρ MAE ρ MAE ρ

Baseline 2.721 0.878 3.665 0.938 7.659 0.841

1 2.349 0.864 5.025 0.817 3.595 0.727

2 2.360 0.886 5.184 0.813 3.780 0.893

3 2.204 0.890 4.896 0.850 2.952 0.840

4 3.376 0.845 4.833 0.842 3.513 0.830

5 2.468 0.878 4.688 0.842 3.563 0.853

6 2.339 0.875 4.923 0.853 3.061 0.866

Table 4.7: Detailed Performance of Different Validation Strategies and Window Sizes
Across Three Flu Seasons. The table shows the mean absolute error (MAE) and cor-
relation (ρ) for each validation strategy in the 16-17, 17-18, and 18-19 flu seasons for
forecasting 14 days ahead task. The best performance in each season is highlighted in
bold.

Table 4.8 presents the average performance of each strategy across different flu seasons,

as summarized from Table 4.7. From this, we can observe that Strategy 3 achieved the

best average MAE, while the Baseline model exhibited the highest correlation, primarily

due to its outstanding performance during the 17-18 flu season. In the following sections,

I will analyze the performance of various validation strategies across different flu seasons

and rank them accordingly.
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Strategy Average MAE Average ρ

Baseline 4.682 0.886

1 3.656 0.803

2 3.775 0.864

3 3.351 0.860

4 3.907 0.847

5 3.573 0.858

6 3.441 0.865

Table 4.8: Average Performance Across Different Validation Strategies for Forecasting 14
Days ahead Task

4.2.1 Ranking of Validation Strategies

2016-2017 Flu Season

By examining Table 4.9, we can see that Strategy 4 has a significant gap compared to the

other strategies. Combined with the performance of Strategy 4 in the 16-17 flu season

shown in Table 4.7, it is clear that Strategy 4 is the worst validation strategy. The

remaining validation strategies show minimal differences in MAE loss, so we rank them

based on their correlation. The ranking of strategies for predicting the ILI rate 14 days

ahead during the 16-17 flu season, from best to worst, is as follows:

1. Strategy 3

2. Strategy 2

3. Strategy 5

4. Strategy 6

5. Strategy 1
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Strategy S1 S2 S3 S4 S5 S6

S1 - 0.944 0.310 0.001 0.544 0.950

S2 0.944 - 0.363 0.002 0.623 0.908

S3 0.310 0.363 - 2.5e-4 0.196 0.423

S4 0.001 0.002 2.5e-4 - 0.006 0.001

S5 0.544 0.623 0.196 0.006 - 0.550

S6 0.950 0.908 0.423 0.001 0.550 -

Table 4.9: Pairwise p-values from t-tests between six different strategies based on test
MAE loss for the 2016-17 flu season for forecasting 14 days ahead task. Red indicates
significant differences (p < 0.05).

6. Strategy 4

Although the MAE loss difference between Strategy 1 and Strategy 3 (which has the best

MAE) is small, Strategy 1’s correlation is 0.026 lower than the best MAE loss achieved

by Strategy 3.

2017-2018 Flu Season

By examining Table 4.10, we observe a significant gap between Strategy 2 and Strategy

5. Further analysis of Table 4.7 reveals that Strategy 2 has the worst MAE loss, while

Strategy 5 achieves the best MAE loss. Thus, Strategy 5 is identified as the best validation

strategy, and Strategy 2 as the worst. The remaining validation strategies show little

difference in MAE loss, so they are ranked based on their correlation. The resulting

ranking is as follows:

1. Strategy 5

2. Strategy 6

3. Strategy 3

4. Strategy 4
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Strategy S1 S2 S3 S4 S5 S6

S1 - 0.502 0.655 0.461 0.158 0.698

S2 0.502 - 0.269 0.127 0.017 0.261

S3 0.655 0.269 - 0.819 0.415 0.926

S4 0.461 0.127 0.819 - 0.513 0.724

S5 0.158 0.017 0.415 0.513 - 0.307

S6 0.698 0.261 0.926 0.724 0.307 -

Table 4.10: Pairwise p-values from t-tests between six different strategies based on test
MAE loss for the 2017-18 flu season for forecasting 14 days ahead task. Red indicates
significant differences (p < 0.05).

5. Strategy 1

6. Strategy 2

Although the MAE loss difference between Strategy 1 and Strategy 5 is not large in Table

4.10, the correlation of Strategy 5 is 0.025 higher than that of Strategy 1.

2018-2019 Flu Season

By examining Table 4.11, we observe a significant gap in MAE loss between Strategy

1 and both Strategy 3 and Strategy 6, as well as between Strategy 2 and Strategy 3.

Based on Table 4.7 and the information above, we can conclude that Strategy 3 has

the best MAE loss, while Strategy 2 has the worst MAE loss. Therefore, Strategy 2 is

identified as the worst validation strategy, and Strategy 3 as the best. Since Strategy

1 shows a considerable gap compared to Strategy 3 and Strategy 6, we can infer that

Strategy 1 is the second-worst, while Strategy 6 is the second-best validation strategy.

As the remaining strategies show no significant differences in MAE loss, they are ranked

according to their correlation. The resulting order is as follows:

1. Strategy 3

39



University College London

Strategy S1 S2 S3 S4 S5 S6

S1 - 0.559 0.008 0.829 0.918 0.036

S2 0.559 - 0.023 0.540 0.562 0.051

S3 0.008 0.023 - 0.150 0.054 0.641

S4 0.829 0.540 0.150 - 0.907 0.255

S5 0.918 0.562 0.054 0.907 - 0.124

S6 0.036 0.051 0.641 0.255 0.124 -

Table 4.11: Pairwise p-values from t-tests between six different strategies based on test
MAE loss for the 2018-19 flu season for forecasting 14 days ahead task. Red indicates
significant differences (p < 0.05).

2. Strategy 6

3. Strategy 5

4. Strategy 4

5. Strategy 1

6. Strategy 2

Comparing Strategy 1 with the best-performing Strategy 3, we find that Strategy 3’s

MAE loss is 17.9% better, and its correlation is 0.113 higher than that of Strategy 1.

Summary

Overall, strategy 3 performs only slightly worse during the 17-18 flu season. However,

based on Table 4.10, we can see that the difference in MAE loss between strategy 3 and

the best model, strategy 5, is not statistically significant. Both strategy 5 and strategy 6

show relatively stable performance, frequently ranking in the top three. Therefore, it can

be concluded that strategy 3 is the optimal model. Additionally, we observe that only

during the 16-17 flu season does strategy 2 rank relatively high, whereas the performances

of strategy 1, strategy 4, and strategy 2 are generally poor, often appearing in the bottom
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three.

4.2.2 Parameter Selection Across Different Flu Seasons

Table 4.12 presents the average parameters selected by different strategies across various

flu seasons under different random seeds. By comparing this table with the one from

the nowcasting task, Table 4.6, we can observe that both tend to select larger window

sizes. A larger window size can capture more historical information, which is crucial

for prediction tasks because it allows the model to detect long-term trends and patterns.

Specifically, a larger window size includes the search frequencies of top N selected queries

over more days, enabling the model to more accurately identify potential changes in

disease transmission and thus improve prediction accuracy.

Season W BS LR Units1 Units2 Units3 N

16-17 12.71 36.40 7.45e-5 72.03 38.14 40.68 235
17-18 13.07 46.20 8.05e-5 79.17 35.83 33.75 305
18-19 11.20 26.13 8.80e-5 78.33 41.67 40.00 280

Table 4.12: Averaged Hyperparameters by Season for forecasting 14 days ahead task. W
stands for window size, BS for batch size, LR for learning rate, Units1/2/3 represent the
number of units in the first, second, and third layers, and N for the query number.

We can also observe that during the 2017-2018 flu season, the number of top N selected

queries is significantly higher than in the 2016-2017 season, while only slightly higher

than in the 2018-2019 season. This phenomenon is consistent with the findings from the

nowcasting task, further indicating that the 2017-2018 flu season exhibited greater vari-

ability in flu transmission, which required more queries to capture the complex dynamic

changes.
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4.3 Forecasting 21 Days Ahead

Table 4.13 presents the average performance of the baseline model and various strategies

across 10 random seeds for predicting the ILI rate 21 days ahead. We can observe once

again that during the 17-18 flu season, the baseline model performs the best, with an

MAE loss that is 31.5% higher than strategy 5, which had the lowest MAE loss, and a

correlation of 0.942. However, the baseline model performs poorly in the 18-19 flu season,

with an MAE loss 4.91 times higher than that of strategy 3, which had the lowest MAE

loss. In the 16-17 flu season, strategy 3, which had the best MAE loss, outperformed the

baseline model by 25.7%.

Strategy
16-17

Flu Season
17-18

Flu Season
18-19

Flu Season

MAE ρ MAE ρ MAE ρ

Baseline 2.965 0.856 3.667 0.942 14.651 0.705

1 2.410 0.815 5.643 0.765 3.448 0.788

2 3.305 0.876 5.885 0.723 7.224 0.911

3 2.202 0.839 5.800 0.760 2.981 0.851

4 2.559 0.807 5.561 0.749 3.571 0.811

5 2.428 0.845 5.350 0.763 3.810 0.843

6 2.243 0.814 5.665 0.805 4.565 0.913

Table 4.13: Detailed Performance of Different Validation Strategies and Window Sizes
Across Three Flu Seasons. The table shows the mean absolute error (MAE) and cor-
relation (ρ) for each validation strategy in the 16-17, 17-18, and 18-19 flu seasons for
forecasting 21 days ahead task. The best performance in each season is highlighted in
bold.

Table 4.14 presents the Average Performance Across Different Validation Strategies. We

can observe that strategy 3 has the best average MAE loss of 3.661, which is 48.4% better

than the baseline model. Strategy 6 shows the highest correlation of 0.844, which is 0.010
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higher than the baseline model.

Strategy Average MAE Average ρ

Baseline 7.094 0.834

1 3.834 0.789

2 4.213 0.837

3 3.661 0.817

4 3.897 0.789

5 3.863 0.817

6 4.158 0.844

Table 4.14: Average Performance Across Different Validation Strategies for Forecasting
21 Days ahead Task

4.3.1 Ranking of Validation Strategies

2016-2017 Flu Season

By examining Table 4.15, we can determine that the performance of strategy 2 is sig-

nificantly different from that of all other strategies. Additionally, from Table 4.13, we

observe that strategy 2 has the worst MAE loss, which leads to the conclusion that strat-

egy 2 should be ranked last. Since there is no significant difference in MAE loss among

the remaining validation strategies, they are ranked based on their correlation values.

The ranking from best to worst is as follows:

1. Strategy 5

2. Strategy 3

3. Strategy 1

4. Strategy 6
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Strategy S1 S2 S3 S4 S5 S6

S1 - 9.59e-5 0.130 0.437 0.922 0.320

S2 9.59e-5 - 1.83e-6 0.002 4.16e-4 2.14e-5

S3 0.130 1.83e-6 - 0.048 0.179 0.771

S4 0.437 0.002 0.048 - 0.541 0.121

S5 0.922 4.16e-4 0.179 0.541 - 0.341

S6 0.320 2.14e-5 0.771 0.121 0.341 -

Table 4.15: Pairwise p-values from t-tests between six different strategies based on test
MAE loss for the 2016-17 flu season for forecasting 21 days ahead task. Red indicates
significant differences (p < 0.05).

5. Strategy 4

6. Strategy 2

We can also observe that while strategy 1 has a similar MAE loss to the other strategies

(except strategy 2), it is ranked lower due to its relatively poor correlation, which is 0.030

lower than strategy 5.

2017-2018 Flu Season

In Table 4.16, we can observe that the MAE loss of strategy 5 differs significantly from

that of strategy 2 and strategy 3. From Table 4.13, we see that strategy 5 has the best

MAE loss, while the performance of strategy 2 and strategy 3 is comparatively poor.

Therefore, strategy 5 is ranked first. Since the difference in MAE loss between strategy 2

and strategy 3 is not significant, we rank them based on their correlation. Strategy 3 has

a higher correlation than strategy 2, making strategy 2 the last and strategy 3 the second

to last. The remaining strategies are then ranked based on their correlation, resulting in

the following ranking from best to worst:

1. Strategy 5
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Strategy S1 S2 S3 S4 S5 S6

S1 - 0.288 0.541 0.714 0.154 0.924

S2 0.288 - 0.725 0.123 0.007 0.309

S3 0.541 0.725 - 0.321 0.049 0.584

S4 0.714 0.123 0.321 - 0.239 0.624

S5 0.154 0.007 0.049 0.239 - 0.104

S6 0.924 0.309 0.584 0.624 0.104 -

Table 4.16: Pairwise p-values from t-tests between six different strategies based on test
MAE loss for the 2017-18 flu season for forecasting 21 days ahead task. Red indicates
significant differences (p < 0.05).

2. Strategy 6

3. Strategy 1

4. Strategy 4

5. Strategy 3

6. Strategy 2

Here, the MAE loss of strategy 1 is not significantly different from that of strategy 5,

which has the best MAE loss, and the correlation difference between them is also small.

However, strategy 1’s correlation is 0.040 lower than that of strategy 6, which has the

highest correlation.

2018-2019 Flu Season

Here, we can observe that strategy 2 has significant differences compared to all other

strategies, and strategy 6 shows significant differences with strategy 1 and strategy 3. By

examining Table 4.13, we can see that strategy 2 has the worst MAE loss, so it should

be ranked last. Additionally, strategy 6 shows significant differences with strategy 1 and

strategy 3, and based on their performance, strategy 6 performs worse, while strategy 1
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Strategy S1 S2 S3 S4 S5 S6

S1 - 1.33e-9 0.099 0.766 0.365 0.003

S2 1.33e-9 - 8.44e-9 1.54e-6 2.69e-6 1.96e-5

S3 0.099 8.44e-9 - 0.237 0.093 0.001

S4 0.766 1.54e-6 0.237 - 0.674 0.071

S5 0.365 2.69e-6 0.093 0.674 - 0.153

S6 0.003 1.96e-5 0.001 0.071 0.153 -

Table 4.17: Pairwise p-values from t-tests between six different strategies based on test
MAE loss for the 2018-19 flu season for forecasting 21 days ahead task. Red indicates
significant differences (p < 0.05).

and strategy 3 perform better. Therefore, strategy 6 should be ranked second to last.

Since there is no significant difference in MAE loss between strategy 1 and strategy 3, we

rank them based on their average correlation, with strategy 3 ranked first and strategy

1 second. As the remaining strategies do not show significant differences in MAE loss,

they are ranked according to their correlation. The final ranking from best to worst is

as follows:

1. Strategy 3

2. Strategy 1

3. Strategy 5

4. Strategy 4

5. Strategy 6

6. Strategy 2

Although there is no significant difference in MAE loss between strategy 1 and the best-

performing strategy 3, strategy 1’s correlation is 0.063 lower than that of strategy 3.
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Summary

In the task of predicting the ILI rate 21 days ahead, we can observe that strategy 5

consistently ranks in the top three, securing first place in both the 16-17 and 17-18 flu

seasons. Strategy 3 only ranks fifth during the 17-18 flu season, but it ranks second in

the 16-17 flu season and first in the 18-19 flu season.

4.3.2 Parameter Selection Across Different Flu Seasons

In Table 4.18, we observe that both the 16-17 and 18-19 flu seasons tend to favor larger

window sizes (with a window size of 14). The 18-19 season shows a more balanced

selection, slightly favoring a window size of 14. However, the average query numbers for

the 16-17 flu season are slightly higher than for the 17-18 flu season, with both seasons

showing values around 300.

Season WS BS LR Units1 Units2 Units3 QN

16-17 13.53 46.20 9.25e-05 74.17 39.58 40.00 315.00
17-18 13.18 45.50 8.95e-05 73.33 35.42 36.25 281.67
18-19 10.85 33.13 8.35e-05 76.67 38.33 40.00 258.33

Table 4.18: Averaged Hyperparameters by Season for forecasting 21 days ahead task.
WS stands for window size, BS for batch size, LR for learning rate, Units1/2/3 represent
the number of units in the first, second, and third layers, and QN for the query number.
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5 | Discussion

5.1 Main Findings

1. In the nowcasting task, all validation strategies outperform the baseline model.

However, in the forecasting tasks for 14 days ahead and 21 days ahead, the baseline

model performs better than the models using validation strategies during the 17-18

flu season. This may be due to the unusually high peak in the 17-18 flu season,

where models that performed best on the validation set underperformed on the test

set compared to the discarded combinations.

2. In the nowcasting task, validation strategy 3 is the best-performing strategy. For

the forecasting tasks of 14 days ahead and 21 days ahead, strategies 3, 5, and 6

exhibit strong performance, while other strategies are slightly less effective.

3. In the forecasting tasks, each tested flu season tends to favor a larger window size.

4. The 17-18 flu season selects a higher number of average queries, likely due to the

higher peak during that season. Using more frequent queries provides additional

information for the model to learn from.

5.2 Limitations and Future Work

Due to time and computational resource constraints, the parameter selection was rela-

tively limited. Each model should be given more parameter options to further optimize

its performance. In terms of validation strategies, it might be beneficial to move beyond

the conventional approach of selecting 180 days from the last three years of the training

set. For instance, selecting a total of 365 days from the last five years could provide a

more robust validation. Additionally, the composition of the validation strategy could be
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more varied. More combinations of onset, peak, and outset periods could be considered

to validate the models.

Additionally, we observed that the best-performing validation strategy in the nowcasting

task, strategy 6, and the well-performing strategies in the forecasting task, strategies

3 and 5, all included one or more peak periods from the flu seasons. In contrast, the

less effective strategies did not use these peak periods. This suggests that using peak

periods as part of the validation set may have a positive impact on model performance.

Therefore, exploring more combinations of periods, particularly those involving the peak

period, could provide valuable insights into how different phases of the flu season affect

the results.

This project utilized a Feed Forward Neural Network (FFNN), but the model scope could

be expanded to include other models, such as Long Short-Term Memory (LSTM) net-

works. This would allow for an examination of whether the choice of validation strategy

is consistent across different models and tasks, or if different models require different

validation strategies to achieve optimal performance.

When forecasting the 17-18 flu season, the baseline model performed better. This raises

the question of how to handle special cases like the 17-18 flu season, where the model

with the lowest validation loss does not necessarily represent the best-performing model.

Moving forward, alternative strategies should be considered to ensure robustness in such

scenarios.
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The primary focus of this project was to examine how different validation sets, composed

of various time periods, influence parameter selection in a feedforward neural network

(FFNN) for predicting ILI rates using web search data. This study demonstrated that

the choice of validation set can lead to variations in the optimal parameter combinations,

ultimately affecting the model’s performance.

In this study, we developed a three-layer feedforward neural network (FFNN) and used

validation sets composed of 60-day windows of the onset, outset, or peak periods from

three years of data to perform grid search for parameter selection. These parameters

were then used to predict and nowcast ILI rates for the next 14 and 21 days. In the

nowcasting task, the model performed best when the validation set was composed of 60

days around the outset in the first year, 60 days around the peak in the second year, and

60 days around the onset in the third year of the last three years of training data. The

next best performance was achieved using a validation set of 60 days around the onset

in each of the last three years.

We found that, compared to the baseline model, the models selected by validation strate-

gies outperformed the baseline in all tasks except for the forecasting task during the 17-18

flu season. In this case, the larger peak in the 17-18 flu season caused the parameters

selected based on the validation set to perform poorly on the test set. In the nowcasting

task, the baseline model’s MAE loss was 38.4% higher than that of the best-performing

validation strategy, strategy 6. Strategy 6 demonstrated the best performance in the

nowcasting task, with an MAE loss 8.2% lower than that of strategy 1. In the forecast-

ing tasks for 14 and 21 days ahead, strategy 3 achieved the best average MAE across the

three flu seasons, with MAE losses 9.1% and 4.7% lower than strategy 1 for 14 and 21

days ahead, respectively.
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Future research could involve expanding the parameter options available in grid search

to allow for greater flexibility and selection, leading to potentially better-performing

models. Other parameter optimization methods, such as Bayesian optimization, could

also be explored to find the optimal parameter combinations. Additionally, future studies

could investigate how different types of neural networks perform with various validation

strategies.
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A | Source Code

Source code for all of the methods implemented in Chap. 3 for the project can be found

in the GitHub repository:

https://github.com/yueling-16/Master_Final_Project.
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