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About this lecture

• Quicksort (yet another sorting algorithm) 
— Description 
— Performance analysis 

• Material 
— Cormen, Leiserson, Rivest and Stein. Introduction 

to Algorithms. MIT Press, 3rd Edition, 2009 
(mainly Chapter 7) 

— Alternative slides at https://algs4.cs.princeton.edu/lectures/ 
(Sedgewick and Wayne)

https://algs4.cs.princeton.edu/lectures/


Quicksort divides & conquers



Given an array A with n elements, A[1…n]: 

• DIVIDE (step 1) 
Partition, i.e. re-arrange the elements of, array A[1…n] so that 
for some element A[q]: 
1. all elements on the left of A[q], i.e. A[1…q−1], are less than or 

equal to A[q], and  
2. all elements on the right of A[q], i.e. A[q+1…n], are greater 

than or equal to A[q].  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Note: 
• We will assume that the 

elements of A are distinct. 

• We will be sorting the elements 
of A in an ascending order.



Quicksort was…
• invented by Tony Hoare in 1959 
• published in 1961 (paper) 
 
 
 
 
 
 
 
 
 
 
 

from Wikipedia

https://dl.acm.org/citation.cfm?id=366644
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— Θ(n logn) best case 
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optimised versions) 

• is efficient 

— O(n logn) on average 
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— Θ(n2) worst case 

(for an array with n elements) 

• requires a small amount of memory 
(in-place algorithm)

from Wikipedia



Quicksort7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

p r

… 6 5 1 … 22 9 2 …}
sub-array A[p…r]

both p, r are array indices
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Partition is the central sorting 
operation of quicksort

p q? r

… 1 2 6 … 22 9 5 …}
sub-array A[p…r]

p, r, q are array indices
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6 5 1 3 2 4 x = 4, A[j = p+1] = 5 > x
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6 5 1 3 2 4

i j

6 5 1 3 2 4

x = 4, A[j = p+1] = 5 > x

A[j = p+2] = 1 < x, i = i+1
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6 5 1 3 2 4 pivot element
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• As i goes through the array from left to 
right, no element greater than the pivot 
element (= 4) is left behind it. When such 
element is identified, it is swapped.
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right, no element greater than the pivot 
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• Elements i+1 to j−1 are always greater 
than the pivot element.
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during partitioning: balanced vs. unbalanced outcome 

• Worst case: Θ(n2) 

— when partitioning is always completely unbalanced, i.e. the 
choice of pivot generates sub-arrays that always have n−1 
and 0 elements, respectively  

— when the array is already sorted 

• Best case: Θ(n logn) 

— when partitioning is always fairly balanced, i.e. the choice 
of pivot generates sub-arrays that always have ⌊n/2⌋ and 
⌈n/2⌉−1 elements, respectively

Quicksort’s performance
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Recall previous example (average case)
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Cost estimation (running time)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.
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2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
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ray AŒp : : r ! in place.
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2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.

• Cost is mainly affected by the 
partition operation, and 
especially by the for-loop in it 
that performs n−1 comparisons 

• The cost for a single partition 
operation is: Θ(n), where  
n = r−p+1 
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Best case cost estimation example (n = 8)

n = 8

n − 1 = 3 P 4

n-dimensional array, cost: c ⁎ 8

P: pivot element, cost: c ⁎ 7

P 11 P 12

P 01

cost: c ⁎ 5

cost: c ⁎ 2

total cost: c ⁎ (8+7+5+2) = c ⁎ 22 ≈ Θ(n logn)



Best case cost analysis
If the splits are even, partition produces two sub-problems, 
each of which has no size more than n/2. 
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Best case cost analysis
If the splits are even, partition produces two sub-problems, 
each of which has no size more than n/2. 

Thus the running time is equal to:

T(n) = 2T(n/2) + Θ(n)

Using case 2 of the master theorem (see Theorem 4.1 in  
Cormen et al. textbook, 3rd edition), this has the solution:

T(n) = Θ(n log n)

For T(n) = aT(n/b) + f(n),
if f(n) = Θ (nlogb a), then T(n) = Θ (nlogb a log n),
where b = 2 and a = 2.



• Instead of using the right-most element, A[r], as the pivot…

Randomised quicksort

7.3 A randomized version of quicksort 179

7.2-6 ?
Argue that for any constant 0 < ˛ ! 1=2, the probability is approximately 1 " 2˛
that on a random input array, PARTITION produces a split more balanced than 1"˛
to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have made an assumption
that all permutations of the input numbers are equally likely. In an engineering
situation, however, we cannot always expect this assumption to hold. (See Exer-
cise 7.2-4.) As we saw in Section 5.3, we can sometimes add randomization to an
algorithm in order to obtain good expected performance over all inputs. Many peo-
ple regard the resulting randomized version of quicksort as the sorting algorithm
of choice for large enough inputs.

In Section 5.3, we randomized our algorithm by explicitly permuting the in-
put. We could do so for quicksort also, but a different randomization technique,
called random sampling, yields a simpler analysis. Instead of always using AŒr !
as the pivot, we will select a randomly chosen element from the subarray AŒp : : r !.
We do so by first exchanging element AŒr ! with an element chosen at random
from AŒp : : r !. By randomly sampling the range p; : : : ; r , we ensure that the pivot
element x D AŒr ! is equally likely to be any of the r " p C 1 elements in the
subarray. Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. In the new partition
procedure, we simply implement the swap before actually partitioning:
RANDOMIZED-PARTITION.A; p; r/

1 i D RANDOM.p; r/
2 exchange AŒr ! with AŒi !
3 return PARTITION.A; p; r/

The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION:
RANDOMIZED-QUICKSORT.A; p; r/

1 if p < r
2 q D RANDOMIZED-PARTITION.A; p; r/
3 RANDOMIZED-QUICKSORT.A; p; q " 1/
4 RANDOMIZED-QUICKSORT.A; q C 1; r/

We analyze this algorithm in the next section.
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• Why? By adding randomisation, obtaining the average expected 

performance is more likely than obtaining the worst case 
performance.



Average number of comparisons  (1/3)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.
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n [(c0 + cn−1) + (c1 + cn−2) + … + (cn−1 + c0)]
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• At most n calls to partition over the execution of quicksort 
because every time partition is called, it will handle at least 
one element 

• Every call to the partition takes O(1) + lines 3-6 (focus on 
the number of comparisons)

7.1 Description of quicksort 171

Combine: Because the subarrays are already sorted, no work is needed to combine
them: the entire array AŒp : : r ! is now sorted.

The following procedure implements quicksort:

QUICKSORT.A; p; r/

1 if p < r
2 q D PARTITION.A; p; r/
3 QUICKSORT.A; p; q ! 1/
4 QUICKSORT.A; q C 1; r/

To sort an entire array A, the initial call is QUICKSORT.A; 1; A: length/.

Partitioning the array
The key to the algorithm is the PARTITION procedure, which rearranges the subar-
ray AŒp : : r ! in place.

PARTITION.A; p; r/

1 x D AŒr !
2 i D p ! 1
3 for j D p to r ! 1
4 if AŒj ! " x
5 i D i C 1
6 exchange AŒi ! with AŒj !
7 exchange AŒi C 1! with AŒr !
8 return i C 1

Figure 7.1 shows how PARTITION works on an 8 -element array. PARTITION
always selects an element x D AŒr ! as a pivot element around which to partition the
subarray AŒp : : r !. As the procedure runs, it partitions the array into four (possibly
empty) regions. At the start of each iteration of the for loop in lines 3–6, the regions
satisfy certain properties, shown in Figure 7.2. We state these properties as a loop
invariant:

At the beginning of each iteration of the loop of lines 3–6, for any array
index k,
1. If p " k " i , then AŒk! " x.
2. If i C 1 " k " j ! 1, then AŒk! > x.
3. If k D r , then AŒk! D x.
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k = j − i, then E(m) =
n−1

∑
i=1

n

∑
k=1

2
k + 1

<
n−1

∑
i=1

n

∑
k=1

2
k

≈
n−1

∑
i=1

O (log n) = O (n log n) .

Similar to the 
previous proof
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