COMPO0005 (Algorithms)
(Quicksort

Vasileios Lampos
Computer Science, UCL

@lampos y
Slides (with potential revisions)

lampos.net/slides/quicksort2019.pdf
lampos.net

https://www.lampos.net/slides/quicksort2019.pdf

About this lecture

e Quicksort (yet another sorting algorithm)

— Description
— Performance analysis

e Material

— Cormen, Leiserson, Rivest and Stein. Introduction
to Algorithms. MIT Press, 3rd Edition, 2009
(mainly Chapter 7)

— Alternative slides at https://algs4.cs.princeton.edu/lectures/
(Sedgewick and Wayne)

https://algs4.cs.princeton.edu/lectures/

Quicksort divides & conquers

Quicksort divides & conquers

Given an array A with n elements, A[1...n|:

e DIVIDE (step 1)
Partition, i.e. re-arrange the elements of, array A[l...n| so that
for some element A|q|:

1. all elements on the left of A[q|, i.e. A[1...q—1], are less than or
equal to Alq|, and
2. all elements on the right of A|q|, i.e. A|g+1...n|, are greater

than or equal to Aq].

Quicksort divides & conquers

Given an array A with n elements, A[1...n|:

e DIVIDE (step 1)
Partition, i.e. re-arrange the elements of, array A[l...n| so that
for some element A|q|:

1. all elements on the left of A[q|, i.e. A[1...q—1], are less than or
equal to Alq|, and
2. all elements on the right of A|q|, i.e. A|g+1...n|, are greater

than or equal to Aq].

¢ CONQUER (step 2)
Sort sub-arrays A[l...q—1| and A|¢+1...n| by recursive
executions of step 1.

Quicksort divides & conquers

Given an array A with n elements, A[1...n|:

e DIVIDE (step 1)
Partition, i.e. re-arrange the elements of, array A[l...n| so that
for some element A|q|:

1. all elements on the left of A[q|, i.e. A[1...q—1], are less than or
equal to Alq|, and
2. all elements on the right of A|q|, i.e. A|g+1...n|, are greater

than or equal to Aq].

¢ CONQUER (step 2)
Sort sub-arrays A[l...q—1| and A|¢+1...n| by recursive
executions of step 1.

e COMBINE (step 3)
Just by joining the sorted sub-arrays we obtain a sorted array.

Quicksort divides & conquers

Given an array A with n elements, A[1...n|:

e DIVIDE (step 1)

Partition, i.e. re-arrange the elements of, array A[l...n| so that
for some element A|q|:

are less than or

1. all elements
equal to A|

| I

2. all element; , are greater

than or eq

e CONQUER (

Sort sub-arrays AT - Frrecursive
executions of step 1.

¢ COMBINE (step 3)
Just by joining the sorted sub-arrays we obtain a sorted array.

(Quicksort was...

e invented by Tony Hoare in 1959
® pubhshed in 1961 (M)

Tony Hoare in 2011

Born Charles Antony Richard Hoare
11 January 1934 (age 84)

from Wikipedia

https://dl.acm.org/citation.cfm?id=366644

(Quicksort was...

invented by Tony Hoare in 1959
published in 1961 (paper)

ALGORITHM 64

QUICKSORT

C. A. R. Hoark

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N;
array A; integer M,N;
comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;
if M < N then begin partition (A,M,N,L,J);
quicksort (A,M,J);
quicksort (A, I, N)
end
end quicksort

Tony Hoare in 2011

Born Charles Antony Richard Hoare
11 January 1934 (age 84)

from Wikipedia

https://dl.acm.org/citation.cfm?id=366644

(Quicksort was...
invented by Tony Hoare in 1959

published in 1961 (paper)

ALGORITHM 64
QUICKSORT
C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N;
array A; integer M,N;
comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;
if M < N then begin partition (A,M,N,L,J);
quicksort (A,M,J);
quicksort (A, I, N)
end
end quicksort

that was the
entire paper!

Tony Hoare in 2011

Born Charles Antony Richard Hoare
11 January 1934 (age 84)

from Wikipedia

https://dl.acm.org/citation.cfm?id=366644

(Quicksort was...

e invented by Tony Hoare in 1959
® pubhshed in 1961 (p_apﬂr)

ALGORITHM 64

QUICKSORT

C. A. R. Hoarg

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N; that was the
array A; integer M,N;

comment Quicksort is a very fast and convenient method of entire paper!

sorting an array in the random-access store of a computer. The

entire contents of the store may be sorted, since no extra space is

required. The average number of comparisons made is 2(M—N) In

(N—M), and the average number of exchanges is one sixth this

amount. Suitable refinements of this method will be desirable for

its implementation on any actual computer;

begin integer 1,J;

if M < N then begin partition (A,M,N,L,J);

quicksort (A,M,J);
quicksort (A, I, N)

end

end quicksort,
e published with an analysis in 1962 (paper) Tony Hoare in 2011
Table 1 Born Charles Antony Richard Hoare
‘ 11 January 1934 (age 84)
NUMBER OF ITEMS ’ MERGE SORT l QUICKSORT fI'OIn Wlkl edla.
500 \ 2 min 8 sec | 1 min 21 sec
1,000 " 4 min 48 sec \ 3 min 8 sec
1,500 . 8min I5sec* | S5Smin 6 sec
2,000 Il min Osec* = 6min 47 sec
| |

* These figures were computed by formula, since they cannot
be achieved on the 405 owing to limited store size.

https://dl.acm.org/citation.cfm?id=366644
https://academic.oup.com/comjnl/article/5/1/10/395338

(Quicksort was...

e invented by Tony Hoare in 1959
® pubhshed in 1961 (p_apﬂr)

ALGORITHM 64

QUICKSORT

C. A. R. Hoarg

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A,M,N); value M,N; that was the
array A; integer M,N;

comment Quicksort is a very fast and convenient method of entire paper!

sorting an array in the random-access store of a computer. The

entire contents of the store may be sorted, since no extra space is

required. The average number of comparisons made is 2(M—N) In

(N—M), and the average number of exchanges is one sixth this

amount. Suitable refinements of this method will be desirable for

its implementation on any actual computer;

begin integer 1,J;

if M < N then begin partition (A,M,N,L,J);

quicksort (A,M,J);
quicksort (A, I, N)

end

end quicksort
e published with an analysis in 1962 (paper) Tony Hoare in 2011
Table 1 Born Charles Antony Richard Hoare
11 January 1934 (age 84)

| from Wikipedia
2min 8sec 1 min 2l sec

\
NUMBER OF ITEMS ’ MERGE SORT ‘ QUICKSORT
\

4 min 48 sec \ 3 min 8 sec
8 min 15 sec*™ | 5 min 6 sec
Il min O sec™ f 6 min 47 sec

* These figures were computed by formula, since they cannot
be achieved on the 405 owing to limited store size.

https://dl.acm.org/citation.cfm?id=366644
https://academic.oup.com/comjnl/article/5/1/10/395338

(Quicksort...

e is still being used (in principle, i.e. its
optimised versions)

Tony Hoare in 2011

Born Charles Antony Richard Hoare
11 January 1934 (age 84)

from Wikipedia

(Quicksort...

is still being used (in principle, i.e. its
optimised versions)

is efficient

— O(n logn) on average

— O(n logn) best case

— O(n?) worst case

Tony Hoare in 2011

Born Charles Antony Richard Hoare

(for an array with n elements) 1 oy 1504 (s00 84
from Wikipedia

(Quicksort...

is still being used (in principle, i.e. its
optimised versions)

is efficient

— O(n logn) on average

— O(n logn) best case

— O(n?) worst case

Tony Hoare in 2011

Born Charles Antony Richard Hoare

(for an array with n elements) 1 oy 1504 (s00 84
from Wikipedia

requires a small amount of memory
(in-place algorithm)

(Quicksort

both p, r are array indices

D T
6|5 | 1]|...]122]9]| 2
D —

sub-array A|p...7

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A,q + 1,r)

(Quicksort

p, T, q are array indices

p g r
2 16 |...122]1915
W—J

sub-array A|p...7

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A,q + 1,r)

(Quicksort — Partition

p, r, ¢ are array indices

p (¢ r
L1216 ...122]9] 5
W—J

sub-array A|p...7

PARTITION(A, p,r)

; jc :: ;4 [_r]l Partition is the central sorting
3 forj = ptor — | operation of quicksort
4 if A[j] <x

5 L=+ 1 QUICKSORT(A, p.r) |
6 exchange A[i]| with A[| 1 ifp<r
7 exchange Ali + 1] wih A N
8 .

return; + 1 4 QUICKSORT(4,q + 1,r)]

Step-by-step example

LoDy T,z

6|5(1]|3]2]|4

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)
x = Alr]
I =p—1
for j = ptor —1
if A[j] <= x
I =141
exchange Ali] with A[/]
exchange A[i 4+ 1] with A[r]
returni + 1

0O~ O\ DN K W —

Step-by-step example

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)
x = Alr]
I =p—1
for j = ptor —1
if A[j] <= x
I =141
exchange Ali] with A[/]
exchange A[i 4+ 1] with A[r]
returni + 1

0O~ O\ DN K W —

N

6

pivot element

Step-by-step example

1 D,J T,T
6|5 |1|3]2 4+ ----------- pivot element
QUICKSORT(A, p,r) Z.
I ifp <r 651|324 z=4, Aj=p+1l]=5> 1
2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)
x = Alr]
I =p—1
for j = ptor —1
if A[j] <= x
I =141
exchange Ali] with A[/]
exchange A[i 4+ 1] with A[r]
returni + 1

0O~ O\ DN K W —

Step-by-step example

1 D,J T
6|5 |1|3]2 4+ ----------- pivot element
QUICKSORT(A, p,r) Z.
I ifp<r 651|324 z=4, Aj=p+l] =5 >z
2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1) L J
4 QUICKSORT(A,q + 1,7) 6|5|1(3[2[4] Apy=p+2|=1<x 1= i+1

PARTITION(A, p, 1)

x = Alr]
I =p—1
for j = ptor —1
if A[j] =x
I =1+ 1
exchange Ali] with A[/]
exchange A[i 4+ 1] with A[r]
return: 4 1

0O~ O\ DN K W —

Step-by-step example

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)
x = Alr]
I =p—1
for j = ptor —1
if A[j] <= x
I =141
exchange Ali] with A[/]
exchange A[i 4+ 1] with A[r]
returni + 1

0O~ O\ DN K W —

1 P, T,
6 1 4+
i
6 1 4
? J
6 1 4
? J
Ll 6 4

----------- pivot element

r=4, Alj=p+1l] =5 >z

Aj=p+2] =1 <z, i = i+1

and Ali|<> A

Step-by-step example

1 D,J T,T

6|5 |1|3]2 4+ ----------- pivot element
QUICKSORT(A, p,r) Z.
I ifp<r 651|324 z=4, Aj=p+l] =5 >z
2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1) L J
4 QUICKSORT(A,q + 1,r) 6513|214 Alj=p+2] =1 < 2, 1= 1+1

l]

Ll 506]3]|2[4] and A[]eA[]

PARTITION(A, p, 1)

1 x = Alr]

2 1 =p—1

3 forj =ptor—1
4 if A[j] <x

5 I =1+ 1
6

7

8

1156324 Aj=p+3] =3 <z, i= i+l

exchange Ali] with A[/]
exchange A[i 4+ 1] with A[r]
return: 4 1

Step-by-step example

1 D,J T,T

6|5 |1|3]2 4+ ----------- pivot element
QUICKSORT(A, p,r) Z.
I ifp<r 651|324 z=4, Aj=p+l] =5 >z
2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1) L J
4 QUICKSORT(A,q + 1,r) 6513|214 Alj=p+2] =1 < 2, 1= 1+1

l]

[1]5/6]3]2[4] and Afl]eA[]

PARTITION(A, p, 1)

l J
; ;C:_;[_"]l 1(5(6(3|2|4| Aj=p+3]=3 < z,i=i+1
3 forj =ptor—1)
4 if A[j] <x 113(6(5|2[4]| and A[{eA]]
5 i =i+1 —
6 exchange Ali] with A[/]
7 exchange A[i + 1] with A[r]
8 returni 4 1

Step-by-step example

1 D,J T,T

6|5 |1|3]2 4+ ----------- pivot element
QUICKSORT(A, p,r) Z.
I ifp<r 651|324 z=4, Aj=p+l] =5 >z
2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1) L J
4 QUICKSORT(A,q + 1,r1) 6513|214 Alj=p+2] =1 < 2, 1= 1+1

l]

(1]5]6]3 2[4 and AlfeA[

PARTITION(A, p, 1)

! J
; ;C:_;l[_r]l 1(5]6(3|2|4| Aj=p+3] =3 <z, 1= 1i+1
3 forj =ptor—1 i
4 if Alj] = x 113]6(5]2[a| and A[j—A[]
5 I =1+1 ~
6 exchange A[i] with A[]] !
7 exchange A[i + 1] with A[r] 113|6]5|2]4
8 returni + 1

Step-by-step example

1 D,J T,T

6|5 |1|3]2 4+ ----------- pivot element
QUICKSORT(A, p,r) Z.
I ifp<r 651|324 z=4, Aj=p+l] =5 >z
2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1) L J
4 QUICKSORT(A,q + 1,r1) 6513|214 Alj=p+2] =1 < 2, 1= 1+1

l]

(1]5]6]3 2[4 and AlfeA[

PARTITION(A, p, 1)

! J
; ;C:_;l[_r]l 1(5]6(3|2|4| Aj=p+3] =3 <z, 1= 1i+1
3 forj =ptor—1 i
4 if Alj] = x 113]6(5]2[a| and A[j—A[]
5 I =1+1 ~
6 exchange A[i] with A[]] !
7 exchange A[i + 1] with A[r] 113|6]5|2]4
8 returni + 1

Step-by-step example

1 D,J T,T

6|5 |1|3]2 4+ ----------- pivot element
QUICKSORT(A, p,r) Z.
I ifp<r 651|324 z=4, Aj=p+l] =5 >z
2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1) L J
4 QUICKSORT(A,q + 1,r1) 6513|214 Alj=p+2] =1 < 2, 1= 1+1

l]

(1]5]6]3 2[4 and AlfeA[

PARTITION(A, p, 1)

! J

; ;C:_;l[_r]l 1(5]6(3|2|4| Aj=p+3] =3 <z, 1= 1i+1
3 forj =ptor—1 i
4 if Alj] = x 113]6(5]2[a| and A[j—A[]
5 I =1+1 ~
6 exchange A[i] with A[]] !
7 exchange A[i + 1] with A[r] 113|6]5|2]4
8 returni + 1 ; y

113 g 5! @ 1

J
113(2[4|6]5] j=r1, Ali+1]<>A]r]

Step-by-step example

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)

1 x = Alr]

2 1 =p—1

3 forj =ptor—1

4 if A[j] <x

5 I =1+ 1

6 exchange Ali] with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

N

r,x

6

5

1

3

2

4

| J@p

O | .

N

X

vt pynT

Step-by-step example

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)

1 x = Alr]

2 1 =p—1

3 forj =ptor—1

4 if A[j] <x

5 I =1+ 1

6 exchange Ali] with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

1 p,J

r,xr

6

5

1

3

2

4

| J@p

O | .

Lopg T
1 2
L]
1 2

Step-by-step example

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)

1 x = Alr]

2 1 =p—1

3 forj =ptor—1

4 if A[j] <x

5 I =1+ 1

6 exchange Ali] with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

1 p,J

r,xr

6

5

1

3

2

4

| J@p

O | .

Lopg T
1 2
L]
1 2
i
1 2

Step-by-step example

QUICKSORT(A, p,r)

1 ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A4,q + 1,r)

PARTITION(A, p, 1)

1 x = Alr]

2 1 =p—1

3 forj =ptor—1

4 if A[j] <x

5 I =1+ 1

6 exchange Ali] with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

1 p,J

r,xr

6

5

1

3

2

4

| J@p

O | .

Lopg T
1 2
L]
1 2
i
1 2
i
1 3

Why does quicksort work?

D,] T
6 5(1(3]2]4] e As ¢ goes through the array from lett to
right, no element greater than the pivot
6]s]1]3]2]4] element (= 4) is left behind it. When such
i : element is identified, it is swapped.
6 1 2 (4| |
1 7] i
[ilslels[2]4]
iBnnnng Partmion (A por)
I 1 x = A[r]
1 6 2141 : .
e —— : 2 i=p-1
! 3 forj =ptor—1
1 6 214 4 if A]] <X
i j 5 I =1+ 1 '
1 2051614] | 6 exchange Ali]| with A|]]
i j 7 exchange A[i + 1] with A[r] '
JEIEINN G S eI | A |

Why does quicksort work?

p?j T?‘qj
6 1 5 | 4
6 1 5 | 4
? J
6 1 2 | 4
l J

NHEIBE
1 6 9 | 4
1 6 9 | 4

‘_/'

l J

1 6 5 | 4
! J

1 9 6| 4
‘\ S 4
l J

1 9 6 5_J

e As ¢ goes through the array from lett to
right, no element greater than the pivot

element (= 4) is left behind it. When such
element is identified, it is swapped.

e LElements i+1 to j—1 are always greater
than the pivot element.

...

PARTITION(A, p, 1)

1 x = Alr]
2 i=p-1
3 forj =ptor—1

5 i =1+1
6 exchange A[i] with A[j]
7 exchange Ali + 1] with A[r]
8 returni + 1

(Quicksort’s performance

(Quicksort’s performance

e The performance is atfected by the choice of the pivot element
during partitioning: balanced vs. unbalanced outcome

(Quicksort’s performance

e The performance is atfected by the choice of the pivot element
during partitioning: balanced vs. unbalanced outcome

e Worst case: O(n?)

when partitioning is always completely unbalanced, i.e. the

choice of pivot generates sub-arrays that always have n—1
and 0 elements, respectively

when the array is already sorted

(Quicksort’s performance

e The performance is atfected by the choice of the pivot element
during partitioning: balanced vs. unbalanced outcome

e Worst case: O(n?)

— when partitioning is always completely unbalanced, i.e. the

choice of pivot generates sub-arrays that always have n—1
and 0 elements, respectively

— when the array is already sorted

e Best case: O(n logn)

— when partitioning is always fairly balanced, i.e. the choice

of pivot generates sub-arrays that always have | n/2 | and

[n/21-1 elements, respectively

Step-by-step example for worst case

i D,J
11213141(51|6

Step-by-step example for worst case

L D, T,
112(3|4]5]6
L)

1121314516

Step-by-step example for worst case

L D, T,
112(3|4]5]6
L)

1121314516

L)
112(3|4]5]6

Step-by-step example for worst case

L Py T,
1|23 |4(5]6
,J

1121314516

L,J
1{2|3]4|5](6

L)
112(3|4]5]6

Step-by-step example for worst case

L Py T,
1|23 |4(5]6
,J

1121314516

L,J
1{2|3]4|5](6

Step-by-step example for worst case

L Py T,
1|23 |4(5]6
,J

1121314516

L,J
1{2|3]4|5](6

Step-by-step example for worst case

© © © © © ©
o Yo Yo Yo Yo Yo
~H <t <t — <t <t
oF) op) e
8
e o o
. S
N T IO [B [N N N
m. — | .3~ — W. — w — —
S SN
© © © © © © © © ©
Yo 10 Yo Yo
=
o Yo 10 Yo Yo
e~ S
<t <+ <t < | I | o] <t <t <+
-]]
o o »n| o o o e | ™
™ SRS ~ ™ o~ ~ |2 e ~
R S 2 R
<3 — & T — — — S, — S — — R
™~ NN
=
= © © © © © ©
Yo Yo o 10 Yol IR Yo
<t <t <t < | .3 = <t
e o m | D o or
o~ N2 i o~ o~

1

Recall previous example (average case)

l

L pg T
6|5
J
6|5
J

‘5 6\

-

56

<t <t <t <t
)
. @\ @\ @\ o™
(A o N o Sl e\
W — w — = — S —
N

)

O 1 ~1 1 <t AR 1 1 <t 1O
A A A A A @] Yl Il e\ | Ok Y Ye)
o (A} (A} (A Sl AL | O 1O o) <t
— — | N Ow Ne) Ne) T Ne) R A\ ¥ S N
1O Sl IR Ie) 1O LO = 1O T ™ ™ (A o

2 Ne) Ne) = | O Sl — — — — —

= o

(NN} NN

Cost estimation (running time)

E?UI.(EKSORT(A’Z’) e Cost is mainly affected by the
5 < E

2 oY q i PARTITION(A. p,r)é partition operation, and

3 QUICKSORT(A4, p,q — 1) : _ .
” QUICKSORT(A. 6 4 Lr) especially by the for-loop in it

--- that performs n—1 comparisons

PARTITION(A, p, r
(4. p.r) e The cost for a single partition

L A= Alr] operation is: ©(n), where
2 l:.p_l n = r—-p+1

3 forj = ptor —1

4 if A[j] <x

5 I =141

6 exchange A[i] with A[]

7 exchange A[i + 1] with A|r]

3 returni 4 1

Worst case cost estimation example (n = 8)

n =2y n-dimensional array, cost: ¢ « 8

Worst case cost estimation example (n = 8)

n-dimensional array, cost: ¢ « 8

P 0 P: pivot element, cost: ¢ « (7+1)

Worst case cost estimation example (n = 8)
n-dimensional array, cost: ¢ « 8
P 0 P: pivot element, cost: ¢ « (7+1)

0O P © cost: ¢« 7

Worst case cost estimation example (n = 8)

= & n-dimensional array, cost: ¢ « 8
/ \
-1=7 P P: pivot element, cost: ¢ « (7+1)
/ N\
0 P/6\ cost: ¢« 7

0O P 5 cost: ¢ « 0

Worst case cost estimation example (n = 8)

= & n-dimensional array, cost: ¢ « 8
/ \
-1=7 P 0 P: pivot element, cost: ¢ « (7+1)
/ N\
0 P/6\ cost: ¢« 7
0 P 5 cost: ¢ x 6

cost: ¢ = O

Worst case cost estimation example (n = 8)

n =2y n-dimensional array, cost: ¢ « 8
RN
n-1=7 P 0 P: pivot element, cost: ¢ « (7+1)
/" N\
0 P/6\ cost: ¢ % 7
0 P/E')\ cost: ¢ x 6
0 P 4 cost: ¢ #

3 P 0 cost:c«x4

Worst case cost estimation example (n = 8)

n =2y n-dimensional array, cost: ¢ « 8
RN
n-1=7 P 0 P: pivot element, cost: ¢ « (7+1)
/" N\

0 P/6\ cost: ¢ % 7
0 P/E')\ cost: ¢ x 6
0 P/4\ cost: ¢ x O
/3\P 0 cost:cx4

2 P 0 cost: ¢ % 3

Worst case cost estimation example (n = 8)

n =2y n-dimensional array, cost: ¢ « 8
o \
n-1=7 P 0 P: pivot element, cost: ¢ « (7+1)
7N\
0 P/6\ cost: ¢« 7
0 P/E')\ cost: ¢ « 0
0 P/4\ cost: ¢ « D
/3\P 0O cost: c«x4
2 P 0 cost: ¢ » 3
VRN
1 P 0 cost: ¢ « 2

total cost: ¢ « (84+8...42) = ¢ » 43 =~ O(n?)

Worst case cost analysis (1/3)

e Performing partition once on an n-dimensional array, generates
2 sub-arrays with ¢ and n—g¢—1 elements

Worst case cost analysis (1/3)

e Performing partition once on an n-dimensional array, generates
2 sub-arrays with ¢ and n—g¢—1 elements
e The cost of partitioning an array with n elements is ©(n)

Worst case cost analysis (1/3)

e Performing partition once on an n-dimensional array, generates
2 sub-arrays with ¢ and n—g¢—1 elements
e The cost of partitioning an array with n elements is ©(n)

S0, the cost of quicksort is: T(n) = (T(q) +T(n—qg— 1)) + O(n)

Worst case cost analysis (1/3)

e Performing partition once on an n-dimensional array, generates
2 sub-arrays with ¢ and n—g¢—1 elements
e The cost of partitioning an array with n elements is ©(n)

S0, the cost of quicksort is: T(n) = (T(q) +T(n—qg— 1)) + O(n)
In the worst case, this cost will be maximised, i.e.

T(n) = max (T(q)+T(n—gq— 1))+ O(n) (1)

0<g<n—1

Worst case cost analysis (1/3)

e Performing partition once on an n-dimensional array, generates
2 sub-arrays with ¢ and n—g¢—1 elements
e The cost of partitioning an array with n elements is ©(n)

S0, the cost of quicksort is: T(n) = (T(q) +T(n—qg— 1)) + O(n)
In the worst case, this cost will be maximised, i.e.

T(n) = max (T(q)+T(n—gq— 1))+ O(n) (1)

0<g<n—1

Let’s now assume that: T() = On?) < cn?, where ¢ > () (2)

Worst case cost analysis (1/3)

e Performing partition once on an n-dimensional array, generates
2 sub-arrays with ¢ and n—g¢—1 elements
e The cost of partitioning an array with n elements is ©(n)

S0, the cost of quicksort is: T(n) = (T(q) +T(n—qg— 1)) + O(n)
In the worst case, this cost will be maximised, i.e.

T(n) = max (T(q)+T(n—gq— 1))+ O(n) (1)

0<g<n—1

Let’s now assume that: T() = On?) < cn?, where ¢ > () (2)

and substitute (1) in (2): T(n) < max (cq*+ c(n—q— 1)*) + O(n)

0<g<n-1

Worst case cost analysis (2/3)

T(n) < max (cq2 +cn—qg— 1)2) + ®O(n)

0<g<n-1

= ¢ max (q2+ (n—q — 1)2) + ®O(n)

Worst case cost analysis (2/3)

T(n) < max (cq2 +c(n—q — 1)2) + ®O(n)

0<g<n-1

So, we want to maximise g(q) =g*+ (n—qg—1)?

Worst case cost analysis (2/3)

T(n) < max (cq2 +c(n—q — 1)2) + ®O(n)

0<g<n-1

So, we want to maximise g(q) =g*+ (n—qg—1)?

0
2 g4 2n—g=1)(=1)=4g—2n+2

dg

1
— =0 — q=5(n—1)

Worst case cost analysis (2/3)

T(n) < max (cq2 +c(n—q — 1)2) + ®O(n)

0<g<n-1

= ¢ max (q2 +(n—q-— 1)2) + ®O(n)
0<g<n—1
. 8(q)

So, we want to maximise g(q) =g*+ (n—qg—1)?

0
2 g4 2n—g=1)(=1)=4g—2n+2
0q

0g

— =0 = g=—m-1)

g 2

Worst case cost analysis (2/3)

T(n) < max (cq2 +c(n—q — 1)2) + ®O(n)

0<g<n-1

= ¢ max (q2+(n—q— 1)2) + ®O(n)

0<g<n-1

So, we want to maximise g(q) =g*+ (n—qg—1)?

0
2 g4 2n—g=1)(=1)=4g—2n+2

dg

1
— = 0 = g= E(n — 1) this is a local minimum of g(q)
q

Worst case cost analysis (3/3)
T(n) <c max g(q)+ O(n) min of g(q) for g = %(n — 1)
0<g<n-1

Worst case cost analysis (3/3)

T(n) <c max g(q)+ O(n) min of g(q) for g = %(n — 1)

0<g<n-1

max of g(g) forgq=0o0rg=n-1

Worst case cost analysis (3/3)

1
T(n) <c max g(qg)+ BO(n) min of g(qg) forg=—(n—1)
0<g<n—1 2
max of g(g) forgq=0o0rg=n-1
, n—1 (n — 1)?
g0)=gn-1)=mn-1), g)

Worst case cost analysis (3/3)

1
T(n) <c max g(qg)+ BO(n) min of g(qg) forg=—(n—1)
0<g<n—1 2
max of g(g) forgq=0o0rg=n-1
, n—1 (n — 1)?
g0)=gn-1)=mn-1), g)

T(n) < c(n — 1)>+ O(n) = cn®> = 2cn + ¢ + O(n) < cn?

Worst case cost analysis (3/3)

T(n) <c max g(q)+ O(n) min of g(q) for g = %(n — 1)

0<g<n-1

max of g(g) forgq=0o0rg=n-1

n—1>_(n—1)2
2) 2

g(0)=g(n—1)=(n-1), g(

T(n) < c(n — 1)>+ O(n) = cn®> = 2cn + ¢ + O(n) < cn?

which results in T(n) = O(n?)

Worst case cost analysis (3/3)

T(n) <c max g(q)+ O(n) min of g(q) for g = %(n — 1)

0<g<n-1

max of g(g) forgq=0o0rg=n-1

n—1>_(n—1)2
2) 2

g(0)=g(n—1)=(n-1), g(

T(n) < c(n — 1)>+ O(n) = cn®> = 2cn + ¢ + O(n) < cn?

which results in T(n) = O(n?)

C’I/l2 C

1
Also: T(n) > c—(n— 1>+ O(n) = — + —

Worst case cost analysis (3/3)

T(n) <c max g(q)+ O(n) min of g(q) for g = %(n — 1)

0<g<n-1

max of g(g) forg=0o0rg=n-1

n—1>_(n—1)2
2) 2

g(0)=g(n—1)=(n-1), g(

T(n) < c(n — 1)>+ O(n) = cn®> = 2cn + ¢ + O(n) < cn?

which results in T(n) = O(n?)

C’I/l2 C

1
Also: T(n) > c—(n— 1>+ O(n) = — + —

which results in T(n) = Q#°)

Worst case cost analysis (3/3)

T(n) <c max g(q)+ O(n) min of g(q) for g = %(n — 1)

0<g<n-1

max of g(g) forg=0o0rg=n-1

n—1>_(n—1)2
2) 2

g(0)=g(n—1)=(n-1), g(

T(n) < c(n — 1)>+ O(n) = cn®> = 2cn + ¢ + O(n) < cn?

which results in T(n) = O(n?)

C’I/l2 C

1
Also: T(n) > c—(n— 1>+ O(n) = — + —

which results in T(n) = Q#°)

Thus, T(n) = O(n?).

Best case cost estimation example (n = 8)

n==3a n-dimensional array, cost: ¢ » 8
<\
n-1=3 P 4 P: pivot element, cost: ¢ « 7
/ /" N\
1 P 1 /Q\P 1 cost: cx9
1 P 0 cost: ¢ »x 2

total cost: ¢ « (84+7+5+2) = ¢ » 22 =~ O(n logn)

Best case cost analysis

If the splits are even, partition produces two sub-problems,
each of which has no size more than n/2.

Best case cost analysis

If the splits are even, partition produces two sub-problems,
each of which has no size more than n/2.

Thus the running time is equal to:

T(n) =2T(n/2) + On)

Best case cost analysis

If the splits are even, partition produces two sub-problems,
each of which has no size more than n/2.

Thus the running time is equal to:
T(n) =2T(n/2) + On)

Using case 2 of the master theorem (see Theorem 4.1 in
Cormen et al. textbook, 3rd edition), this has the solution: ™,

T(n) = ®(mlogn)

.
.
.
.
.
.
.
.
PR
.

For T(n) = aT(n/b) + f(n),
if f(n) = © (n'°®9), then T(n) = O (n'°®logn),

where b =2 and a = 2.

Randomised quicksort

e Instead of using the right-most element, A|r|, as the pivot...

RANDOMIZED-PARTITION (A, p,r)

1 i = RANDOM(p,r)
2 exchange A|r| with A[i]
3 return PARTITION(A, p,r)

RANDOMIZED-QUICKSORT (A, p, 1)

1 ifp<r

2 g = RANDOMIZED-PARTITION (A, p,r)
3 RANDOMIZED-QUICKSORT (A, p,q — 1)
4 RANDOMIZED-QUICKSORT(A,q + 1,r)

Randomised quicksort

e Instead of using the right-most element, A|r|, as the pivot...

RANDOMIZED-PARTITION (A, p,r)

1 i = RANDOM(p,r)
2 exchange A|r| with A[i]
3 return PARTITION(A, p,r)

RANDOMIZED-QUICKSORT (A, p, 1)

1 ifp<r

2 g = RANDOMIZED-PARTITION (A, p,r)
3 RANDOMIZED-QUICKSORT (A, p,q — 1)
4 RANDOMIZED-QUICKSORT(A,q + 1,r)

e Why? By adding randomisation, obtaining the average expected

performance is more likely than obtaining the worst case
performance.

Average number of comparisons (1/3)

QUICKSORT(A, p, 1) PARTITION(A, p, 1)
1 ifp<r 1 x = Alr]
2 g = PARTITION(A, p,¥r) 2 i = p—1
3 QUICKSORT(A4, p,g—1) 3 forj = ptor —1
4 QUICKSORT(A,qg +1,r) 4 if A[j] <x
5 I =1+ 1
6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]
8 returni + 1

Average number of comparisons (1/3)

QUICKSORT(A, p, 1) PARTITION(A, p, 1)
1 ifp<r 1 x = Alr]
2 g = PARTITION(A, p,¥r) 2 i = p—1
3 QUICKSORT(A4, p,g—1) 3 forj = ptor —1
4 QUICKSORT(A,qg +1,r) 4 if A[j] <x
5 I =1+ 1
6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]
8 returni + 1

c,=1+m—-1)+...

Average number of comparisons (1/3)

QUICKSORT(A, p, 1) PARTITION(A, p, 1)
1 ifp<r 1 x = Alr]
2 g = PARTITION(A, p,¥r) 2 i = p—1
3 QUICKSORT(A4, p,g—1) 3 forj = ptor —1
4 QUICKSORT(A,qg +1,r) 4 if A[j] <x
5 I =1+ 1
6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]
8 returni + 1

C,=n +; [(CO+ cn_l) + (cl + Cn—2> + ...+ (Cn_l + cO)]

Average number of comparisons (1/3)

QUICKSORT(A, p, 1) PARTITION(A, p, 1)
1 ifp<r 1 x = Alr]
2 g = PARTITION(A, p,¥r) 2 i = p—1
3 QUICKSORT(A4, p,g—1) 3 forj = ptor —1
4 QUICKSORT(A,qg +1,r) 4 if A[j] <x
5 I =1+ 1
6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]
8 returni + 1

c,=n +; [(CO+ cn_l) + (cl + Cn—2> + ...+ (cn_l + co)]

total number of
comparisons

Average number of comparisons (1/3)

QUICKSORT(A, p, 1) PARTITION(A, p, 1)
1 ifp<r 1 x = Alr]
2 g = PARTITION(A, p,¥r) 2 i = p—1
3 QUICKSORT(A4, p,g—1) 3 forj = ptor —1
4 QUICKSORT(A,qg +1,r) 4 if A[j] <x
5 I =1+ 1
6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]
8 returni + 1

c,=n +; [(Co-l- cn_l) + (cl + Cn—2> + ...+ (cn_l + co)]

I‘
*
.

total number of probability of a
comparisons split — n pivot
choices

Average number of comparisons (1/3)

QUICKSORT(A, p, 1) PARTITION(A, p, 1)
1 ifp<r 1 x = Alr]
2 g = PARTITION(A, p,¥r) 2 i = p—1
3 QUICKSORT(A4, p,g—1) 3 forj = ptor —1
4 QUICKSORT(A,qg +1,r) 4 if A[j] <x
5 I =1+ 1
6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]
8 returni + 1
1
C,=n-+ ; [(co + Cn—l) + (cl + Cn—2> + ...+ (cn_l + CO)]
A \

I‘
*
.

total number of probability of a
comparisons split — n pivot
choices

sub-array sizes

Average number of comparisons (2/3)

C,=n +l [(Co-l- cn_l) + (cl + cn_2) + ... + (cn_l + CO)]
n

2
n+—(cO+cl+...+cn_1) —
n

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

ne, =n2+2(co+cl + ... +cn_1)

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

ne, =n2+2(co+cl + ... +cn_1)

(n—1c,_;=m—=1*+2(cg+¢;+...+¢,.) Replace n — n-1

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

nc, :n2+2(CO+C1 + ... +Cn—1> """""""""""""""

(I’l— l)cn—l — (n— 1)2+2(C0+C1 + ... +Cn—2>- ------------

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

nec, =n2+2(co+cl + ... +Cn—1> --------------------
(I’l— l)cn—l = (n— 1)2+2(C0+C1 + ... +Cn—2>- ------------

nc,—(n—1)c,_1=2n-1+2, | =

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

nec, =n2+2(co+cl + ... +Cn—1> --------------------
(I’l— l)cn—l = (n— 1)2+2(C0+C1 + ... +Cn—2>- ------------

nc,—(n—1)c,_1=2n-1+2, | =

2n—1 (n+1)c,_4
C, = T —
n n

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

nc :n2+2(CO+C1+---+Cn_1> """""""""""""""

n

(I’l— l)cn—l — (n— 1)2+2(C0+C1 + ... +Cn—2>- ------------

nc,—(n—1)c,_1=2n-1+2, | =

2n—1 (n+1)c,_4 o
= + —> divide by n+1
n n

Cn

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

nc :n2+2(CO+C1+---+Cn_1> """""""""""""""

n

subtract
n—1c,_=mn- 1)2 + 2 (Co +C ... T Cn_2> """"""""""
nc,—(n—1c,_y=2mn-10)+2,_ |, =
2n— 1 (I”l + l)cn—l . .
c, = + —> divide by n+ 1
n n
C 2 1 C

n n—1

= — +
n+1 n+1 nn+1) n

Average number of comparisons (2/3)

1
C, = n+; [(co+cn_1) + (cl +cn_2) + ...+ (cn_l +CO)]
2
=n+—(co+cl+ +cn_1) —
n

nc, :n2+2(CO+C1 + ... +Cn—1> """""""""""""""

subtract
n—1c,_=mn- 1)2 + 2 (Co +C ... T Cn_2> """"""""""
nc,—(n—1c,_y=2mn-10)+2,_ |, =
2n— 1 (I”l + l)cn—l . .
c, = + —> divide by n+ 1
n n
Cn 2 1 Cn—l 2 Cn—l

— — + S |
n+1 n+1 nn+1) n n+1 n

Average number of comparisons (3/3)

C, Ch_1 2
< | replace n — n—1
n+1 n n+1

Average number of comparisons (3/3)

C, Ch_1 2
< | replace n — n—1
n+1 n n+1

Average number of comparisons (3/3)

Cn Scn_l | 2
n+1 n n+1

replace n = n—1

1
4+
|
4
1
4
|
4+

|l

|l

=

|

\®)
N

|

| —

|

|

| —
N———

Average number of comparisons (3/3)

C, Ch_1 2
< | replace n — n—1
n+1 n n+1

1
4+
|
4
1
4
|
4+

|l

|l

=

|

\®)
N

|

| —

|

|

| —
N———

Average number of comparisons (3/3)

C, Ch_1 2
< | replace n — n—1
n+1 n n+1

1
4+
|
4
1
4
|
4+

|l

|l

=

|

\®)
N

|

| —

|

|

| —
N———

Average number of comparisons (3/3)

C, Ch_1 2
< | replace n — n—1
n+1 n n+1

1
4+
|
4
1
4
|
4+

C 1 1 1 . .
—+2 +—+ ... +— Harmonic series
n+1 n 3) .-

or In(n)

>+ Zl+ <2ZZ} = 2H, ~ 2log (n) =

Average number of comparisons (3/3)

C, Ch_1 2
< | replace n — n—1
n+1 n n+1

1
4+
|
4
1
4
|
4+

¢ 1 1 1 . .
— - — 42 +——4 ...+ — Harmonic series
2 n+1 n 3) .-
C n 1 n 1 ’ or ln(n)
=—+2) <2) — =2H ~2log.(n) =
2 Zi+l T~ " ;

.....
*

.

log, n
c, <2(n+ log.(n) =2(n + 1)1 £2 ~ 1.39(nlog, n +log,n) = O(nlogn).
0g, €

Average number of comparisons, take II (1/4)

e At most n calls to partition over the execution of quicksort
because every time partition is called, it will handle at least

one element
e Every call to the partition takes O(1) + lines 3-6 (focus on
the number of comparisons)

PARTITION(A, p,r)
1 x = Alr]

2 1 =p—1

3 forj =ptor —1

4 if A[j] <x

5 I =1+ 1

6 exchange A[i]| with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

Average number of comparisons, take II (1/4)

e At most n calls to partition over the execution of quicksort
because every time partition is called, it will handle at least
one element

e Every call to the partition takes O(1) + lines 3-6 (focus on
the number of comparisons)

PARTITION(A, p,r)
1 x = Alr]

2 1 =p—1

3 forj =ptor —1

4 if A[j] <x

5 I =1+ 1

6 exchange A[i]| with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation
e A is a set containing elements {z1,2,...,2,}, where z; is the +-th
smallest element — A’s are not presumed to be sorted

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation

e A is a set containing elements {z1,2,...,2,}, where z; is the +-th
smallest element — A’s are not presumed to be sorted

o /ij=z,z%+1,...,2} is a set that contains elements from z; to z;

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation

e A is a set containing elements {z1,2,...,2,}, where z; is the +-th
smallest element — A’s are not presumed to be sorted
o /ij=z,z%+1,...,2} is a set that contains elements from z; to z;

How many times does quicksort compare elements z; and z;?

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation

e A is a set containing elements {z1,2,...,2,}, where z; is the +-th
smallest element — A’s are not presumed to be sorted

o /ij=z,z%+1,...,2} is a set that contains elements from z; to z;

How many times does quicksort compare elements z; and z;?

e Any pair of elements of A is compared at most once... because
elements are only compared to the pivot element.

e Reminder: Once used, the pivot element is not used again.

Average number of comparisons, take II (2/4)

If the entire quicksort requires m comparisons, then its running
time is O(n+m). Let’s estimate m!

Notation

e A is a set containing elements {z1,2,...,2,}, where z; is the +-th
smallest element — A’s are not presumed to be sorted
o /ij=z,z%+1,...,2} is a set that contains elements from z; to z;

How many times does quicksort compare elements z; and z;?

e Any pair of elements of A is compared at most once... because
elements are only compared to the pivot element.

e Reminder: Once used, the pivot element is not used again.

Hence, my; = 1, if z 1s compared to z;, and 0 otherwise.

Average number of comparisons, take II (3/4)

Hence, my; = 1, if z 1s compared to z;, and 0 otherwise.

n—1 n
Total number of comparisons: m = Z Z m;;
i=1 j=i+1

Average number of comparisons, take II (3/4)

Hence, my; = 1, if z 1s compared to z;, and 0 otherwise.

E(m) =E

n—1 n
Total number of comparisons: m = Z Z m;;

=1 j=i+l

n—1 n
2 2 M

i=1 j=i+1

n—1 n
= Z Z E <mzj) what is m’s expectation?

=1 j=i+l1

Average number of comparisons, take II (3/4)

Hence, my; = 1, if z 1s compared to z;, and 0 otherwise.

Total number of comparisons: m = Z Z m;;

)) i=1 j=i+1
n—1 n n—1 n
E(m)=E Z 2 my | = Z Z E <mij) what is m’s expectation?
i=1 j=i+1 i=1 j=it+1
n—1

Average number of comparisons, take II (3/4)

Hence, my; = 1, if z 1s compared to z;, and 0 otherwise.

Total number of comparisons: m = Z Z m;;

_n—l n)
Em=E|) Y my

i=1 j=i+1

i=1 j=i+1
n—1 n
Z Z E <mlj) what is m’s expectation?
i=1 j=i+1
n—1
Z Z Pr{z;1s compared to z;}
i=1 j=i+1

e Note that when the pivot element zis z; < x < z;, z; and z; are

not going to be compared. Why?

Average number of comparisons, take II (3/4)

Hence, my; = 1, if z 1s compared to z;, and 0 otherwise.

Total number of comparisons: m = Z Z m;;

_n—l n)
Em=E|) Y my

i=1 j=i+1

i=1 j=i+1
n—1 n
Z Z E <mlj) what is m’s expectation?
i=1 j=i+1
n—1
Z Z Pr{z;1s compared to z;}
i=1 j=i+1

e Note that when the pivot element zis z; < x < z;, z; and z; are

not going to be compared. Why?

e To compare them we need to select z; or z; as pivots.

Average number of comparisons, take II (1/4)

e Note that when the pivot element zis z; < x < z;, z; and z; are
not going to be compared. Why?
e To compare them we need to select z; or z; as pivots.

Average number of comparisons, take II (1/4)

Note that when the pivot element zis z; < x < zj, z; and z; are
not going to be compared. Why?

To compare them we need to select z; or z; as pivots.

Zii has j—i+1 elements. Selecting one of them as the first pivot
has a probability of 1/(j—i+1).

Average number of comparisons, take II (1/4)

Note that when the pivot element zis z; < x < zj, z; and z; are
not going to be compared. Why?

To compare them we need to select z; or z; as pivots.

Zii has j—i+1 elements. Selecting one of them as the first pivot
has a probability of 1/(j—i+1).

2
Pr{z;1s comparedto z;} = Pr{z;or z;are the first pivots } = ——
J—i+1

Average number of comparisons, take II (1/4)

Note that when the pivot element zis z; < x < zj, z; and z; are
not going to be compared. Why?

To compare them we need to select z; or z; as pivots.

Zii has j—i+1 elements. Selecting one of them as the first pivot
has a probability of 1/(j—i+1).

2
Pr{z;1s comparedto z;} = Pr{z;or z;are the first pivots } = ——
j—i+1
n—1

E(m) = Z i Pr{z;1s comparedto z;} = nil i — iZ+ 1

i=1 j=i+1 i=1 j=it1

Average number of comparisons, take II (1/4)

Note that when the pivot element zis z; < x < zj, z; and z; are
not going to be compared. Why?

To compare them we need to select z; or z; as pivots.

Zii has j—i+1 elements. Selecting one of them as the first pivot
has a probability of 1/(j—i+1).

2
Pr{z;1s comparedto z;} = Pr{z;or z;are the first pivots } = ——
j—i+1
E(m Pr{z;1s comparedto z;} =
(m) = ZZ (p } = ZZ}_IH
i=1 j=i+1 i=1 j=i+1
n—1 n n—1
k=j—1 thenk(m) = Z]; k+ 1 < ~ ;_ Similar to the

previous proof
o (logn) = O (nlogn) .

X
i

Slides (with potential revisions)
lampos.net/slides/quicksort2019.pdf

end of lecture

@lampos y
lampos.net @

https://twitter.com/lampos
https://lampos.net
https://www.lampos.net/slides/quicksort2019.pdf

