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In this lecture...

e Topic models
— Latent Semantic Analysis (LSA)

— Probabilistic Latent Semantic Analysis (pLSA)
— Latent Dirichlet Allocation (LDA)

® Vector semantics

— Early approaches (sparse)

— Dense vector semantics (word embeddings) including the
word2vec method

e Applications
— Predicting judicial decisions

— Improving the accuracy of disease models from Web searches

— Inferring the occupational class of a Twitter user



Material

Books
— Jurafsky and Martin. Speech and Language Processing, web.stanford.edu/~jurafsky/slp3/

Papers

— pLSA (Hofmann), nttp://cis.csuohio.edu/~sschung/CIS660/PLSIHoffman. pdf

— LDA (Blei, Ng and Jordan), jmir.org/papers/volume3/blei03a/blei03a.pdf

— word2vec (MikOlOV et al.), papers.nips.cc/paper/5021-distributed-representations-of-words-and-

phrases-and-their-compositionality.pdf

Videos

— Blel on LDA, videolectures.net/mlss09uk blei tm/

— Boyd-Graber on topic models, youtube.com/watch?v=yK7nN3FcqgUs

— Manning on WOI'dQVGC, youtube.com/watch?v=ERibwqs9p38

Slides
— Web Search and Data Mining (WSDM) 2014 tutorial on “Multilingual

Probabilistic TOpiC Modelling”, liir.cs.kuleuven.be/tutorial/WSDM2014Tutorial.pdf

Popular software libraries (might be out-dated by now!)
— MALLET (J&V&), http://mallet.cs.umass.edu/

— gensim (Python), github.com/RaRe-Technologies/gensim
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Part 1 — Topic models
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What is a topic model?

Informally: groupings (or clusters) of words (or n-grams) that are
somehow related

Still informally: method for automatically organising,

understanding, searching, and summarising large (digitised)

document collections

— uncovers hidden (latent) topical patterns (topics!) in the
collection

— can annotate, and then organise or summarise, the documents
based on these topics

As we will see, it is often defined a probabilistic structure
expressing a certain set of assumptions about how the documents
in our collection were generated

Note: we can also learn topic models (word clusters) using
clustering techniques with no explicit probabilistic structure
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Why do we need topics?

Too many documents and we can’t read
them all!

Topic models can automatically
categorise large document collections,

so that we can browse through them
much more efficiently

Applicable on various corpus collections

attracting inter-disciplinary interest

(newspapers, books, social media, health
reports, ...)

Can improve natural language processing tasks (machine
translation, word sense disambiguation, ...)

Can improve downstream tasks in text mining

Let’s see a few examples



Topics in news articles

“Arts” “Budgets” “Children” “Education”
NEW MILLION CHILDREN SCHOOL

FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC

BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

[1/6]

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services.” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Blei, Ng & Jordan. JMLR, 2003. jmlr.org/papers/volume3/blei03a/blei03a.pdf
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17K articles from Science

“Genetics” “Evolution”
human evolution
genome evolutionary

dna species
genetic organisms
genes life
sequence origin
gene biology
molecular groups
seguencing phylogenetic
map Living
information diversity
genetics group
mapping new
project two
seguences common

“Disease” “Computers”
disease computer
host models
bacteria information
diseases data
resistance computers
bacterial system
new network
strains systems
control model
infectious parallel
malaria methods
parasite networks
parasites software
united new
tuberculosis simulations

Blei. CACM, 2012. doi.org/10.1145/2133806.2133826


https://doi.org/10.1145/2133806.2133826

Characterising Twitter users
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Age-group topics on Facebook
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Schwartz et al. PLOS ONE, 2013. doi.org/10.1371/journal.pone.0073791
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Congressional floor debates  [5/6!

D:2.2

REPUBLICAN

DEMOCRAT

R:4.3 D:4.5

Nguyen et al. NeurIPS, 2013. papers.nips.cc/paper/5163-lexical-and-hierarchical-topic-regression.pdf
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Predicting judicial decisions

Label

g -

Words /" Violation of Article 3 that

Positive State Obligations

Detention conditions

Treatment by state officials

Prior Violation of Article 2

Issues of Proof

Sentencing

Top-5 Violation 4 prohibits inhuman treatment -

........................................................................ -

injury, protection, ordered, damage, civil, caused, failed,
claim, course, connection, region, effective, quashed,
claimed, suffered, suspended, carry, compensation,
pecuniary, ukraine

prison, detainee, visit, well, regard, cpt, access, food,
situation, problem, remained, living, support, visited,
establishment, standard, admissibility merit, overcrowding,
contact, good

police, officer, treatment, police officer, July, ill, force,
evidence, ill treatment, arrest, allegation, police station,
subjected, arrested, brought, subsequently, allegedly, ten,
treated, beaten

Top-5 No Violation

june, statement, three, dated, car, area, jurisdiction,
gendarmerie, perpetrator, scene, June applicant, killing,
prepared, bullet, wall, weapon, kidnapping, dated June,
report dated, stopped

witness, asked, told, incident, brother, heard, submission,
arrived, identity, hand, killed, called, involved, started,
entered, find, policeman, returned, father, explained

sentence, year, life, circumstance, imprisonment,
release, set, president, administration, sentenced, term,
constitutional, federal, appealed, twenty, convicted,
continued, regime, subject, responsible

13.50

11.70

10.20

—12.40

—15.20

—17.40

Aletras et al. PeerJ Computer Science, 2016. doi.org/10.7717/peerj-cs.93
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Latent Semantic Analysis (or Indexing) — LSA

Nx D

X

Singular Value Decomposition (SVD; truncated) on the term-
document matrix X representing the frequency of N terms
(words or m-grams) in D documents
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KX K

Singular Value Decomposition (SVD; truncated) on the term-
document matrix X representing the frequency of N terms
(words or m-grams) in D documents

Wk : each topic’s (K) distribution over N terms
Yk : topic importance



Latent Semantic Analysis (or Indexing) — LSA

KX K

Singular Value Decomposition (SVD; truncated) on the term-
document matrix X representing the frequency of N terms
(words or m-grams) in D documents

Wk : each topic’s (K) distribution over N terms
Yk : topic importance
Cxk: each document’s (D) distribution over K topics



Probabilistic LSA — pLSA

For all 7 documents (1 to D):

— Select a document d; with probability p(d;)

— Choose a mixture of K topics 0; for document d;

— For each word position ¢ (1 to N) in the document dj:
—— Choose a topic z; with probability p(zi|d;)

—— Choose a word w; with probability p(wi|z)
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Q observed

Q latent /hidden

For all 7 documents (1 to D):

—Select a document d; with probability p(d;)

— Choose a mixture of K topics 0; for document d;

— For each word position ¢ (1 to N) in the document dj:
—— Choose a topic z; with probability p(zi|d;)

—— Choose a word w; with probability p(wi|z)



Probabilistic LSA — pLSA

ﬁ‘@ Q observed
@ Q latent /hidden
(=)

For all 7 documents (1 to D):

— Select a document d; with probability p(d;)

— Choose a mixture of K topics 0; for document d;

— For each word position ¢ (1 to N) in the document dj:
—— Choose a topic z; with probability p(zi|d;)

—— Choose a word w; with probability p(wi|z)



Probabilistic LSA — pLSA

211 —» W11

> WIN
Q observed

(w1 Q latent /hidden
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Wp1

> WDN

For all 7 documents (1 to D):

— Select a document d; with probability p(d;)

— Choose a mixture of K topics 0; for document d;

— For each word position ¢ (1 to N) in the document dj:
—— Choose a topic z; with probability p(zi|d;)
——Choose a word w; with probability p(wi|z)



Probabilistic LSA — pLSA

Plate notation

& N Q observed
N Q latent /hidden

FORC

0@

Q
For all j documents (1 to D): S
— Select a document d; with probability p(d;)

— Choose a mixture of K topics 0; for document d;

— For each word position ¢ (1 to N) in the document dj:
—— Choose a topic z; with probability p(zi|d;)

—— Choose a word w; with probability p(wi|z)



Probabilistic LSA — pLSA

Plate notation

@ ) - Q observed
N Q latent /hidden

D OO
0,00
X506

For all 7 documents (1 to D):

— Select a document d; with probability p(d;)

— Choose a mixture of K topics 0; for document d;
— For each word position ¢ (1 to N) in the document dj:
—— Choose a topic z; with probability p(zi|d;)

—— Choose a word w; with probability p(wi|z)



Probabilistic LSA — pLSA

Plate notation

@ ) NG Q observed

N Q latent /hidden
D

p(d. w>—Hp<d>H2p< =k|d) p(w;|z; = k)

=1 k=1

For all 7 documents (1 to D):

— Select a document d; with probability p(d;)

— Choose a mixture of K topics 0; for document d;

— For each word position ¢ (1 to N) in the document dj:
—— Choose a topic z; with probability p(zi|d;)

—— Choose a word w; with probability p(wi|z)



Probabilistic LSA — pLSA

Plate notation

@ ) - Q observed
N Q latent /hidden

D

Assumptions: In a document (d;), a word (wj;) is generated from a

single topic (z;) from the K assumed ones, and given that topic, the
word is independent of all of the other words in that document.

K
p(dyw) = pd) pow;|d) = p(d) Y p(z = k|d) pwilz=k)  Joint prob. dist. for d; and w;
k=1
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Plate notation

@ ) NG Q observed
N Q latent /hidden
D

Assumptions: In a document (d;), a word (wj;) is generated from a

single topic (z;) from the K assumed ones, and given that topic, the
word is independent of all of the other words in that document.

K
p(dyw) = pd) pow;|d) = p(d) Y p(z = k|d) pwilz=k)  Joint prob. dist. for d; and w;
k=1

N K
p(d,w) =p@)[ | X pG=kld) pw;|z = k) Joint prob. dist. for d; and w

i=1 k=1



Probabilistic LSA — pLSA

Plate notation

@ ) NG Q observed
N Q latent /hidden

D

Assumptions: In a document (d;), a word (wj;) is generated from a

single topic (z;) from the K assumed ones, and given that topic, the
word is independent of all of the other words in that document.

K
p(dyw) = pd) pow;|d) = p(d) Y p(z = k|d) pwilz=k)  Joint prob. dist. for d; and w;
k=1

N K
p(d,w) =p@)[ | X pG=kld) pw;|z = k) Joint prob. dist. for d; and w

i=1 k=1

D N K
p@w) = [p@ ]| X, pGi = kld) pw;1z; = k) Joint probability distribution
=1

i=1 k=1



Probabilistic LSA — pLSA

Find a mwnor

Plate notation mistake in this slide
(and previous ones)
@ ) - Q observed
N Q latent /hidden
D

Assumptions: In a document (d;), a word (wj;) is generated from a

single topic (z;) from the K assumed ones, and given that topic, the
word is independent of all of the other words in that document.

K
p(dyw) = pd) pow;|d) = p(d) Y p(z = k|d) pwilz=k)  Joint prob. dist. for d; and w;
k=1

N K
p(d,w) =p@)[ | X pG=kld) pw;|z = k) Joint prob. dist. for d; and w

i=1 k=1

D N K
p@w) = [ p@)[] D, pGi = kld) pw;1z; = k) Joint probability distribution
=1

i=1 k=1



Probabilistic LSA — pLSA

Plate notation Number of words may not be
the same for all documents!
|
@ \ZV Wi Q observed
N Q latent /hidden
D

Assumptions: In a document (d;), a word (wj;) is generated from a

single topic (z;) from the K assumed ones, and given that topic, the
word is independent of all of the other words in that document.

K
p(dyw) = p(dy) pw;|d) = p(d) Y p(z = k|d) p(w;lz=k)  Joint prob. dist. for d; and w;

k=1
NI K
p(d,w) = pd)[] D G = kld) p(w;|z, = k) Joint prob. dist. for d; and w
i=1 k=1
D | ﬁ K
pd,w) = [ p@)[1 D, pGi = kld) pw;1z; = k) Joint probability distribution
j=1 i=1 k=1



pLSA — Inference

D N, K
pd.w) =[r@[] D r = kld) pw;lz; = k) y
j=1

i=1 k=1

Expectation Maximisation (EM):

e Compute expected values of the variables, given the
current parametrisation of the model. In the very

beginning, start
parametrisation

with a random or uniform
(E-step)

e Then, pretending that the above values are correct,
update the model parameters (M-step)

e Go back to the |

[-step; repeat until convergence



pLSA — Inference

b TS @ (—@
pd.w) =[r@[] D r = kld) pw;lz; = k) y
j=1 i=1 k=1 D

o Initialise p(zi|d;) and p(wi|zx) to positive quantities

e E-step: Estimate the probability of each topic given the words in
each document



pLSA — Inference

b TS @ (—@
pd.w) =[r@[] D r = kld) pw;lz; = k) y
j=1 i=1 k=1 D

o Initialise p(zi|d;) and p(wi|zx) to positive quantities

e E-step: Estimate the probability of each topic given the words in

each document
Pz d) p(w;|z)

p(Zk | dj’ Wi) —
Z,If,:l p(z | d) p(w;| )



pLSA — Inference

' =® "\ Wi
p(d. w) = Hp(d)H Zp(z = k|d)) p(w; | z; = k) C " QV

Initialise p(zid;) and p(w;i|zr) to positive quantities

e E-step: Estimate the probability of each topic given the words in

each document
Pz d) p(w;|z)

Z,If,:l p(z | d) p(w;| )

p(Zk | dj’ Wi) —

e M-step: Re-estimate p(zid;), p(wi|z) given the revised p(zi dj,w;)
N- D
> nidyw) plaldw) D n(d,w) p(z| dw)
i : =1

p(yld) = —— pOwil2) = ——

Z n(dp Wi) p(Zk’l dja Wi)

=1 k'=1 ]

n(d;, wy) p(zx | dj, Wir)

i : D
=1 i'=1

~



pLSA — Inference

p(d. w) = Hp(d)H Zp(z = k| d)) p(w; | z; = k) y
i=1 k=1 D

Initialise p(zid;) and p(w;i|zr) to positive quantities

e E-step: Estimate the probability of each topic given the words in

eaCh document Fear not! This is just a
p(Zk | d]) p(Wl | Zk) weighted sum. n(dj,w;) is the
1% (Zk | dj’ Wl-) — X number (?f times word '72 appears
zk’:l p(Zk’l d]) p(Wl | Zk’) in document j.
e M-step: Re-estimate p(zd;), p(wi|z:) given the revis¢d p(zi dj,w;)
N; D
' nid,w) pzdyw) | D n(d, w) p(z| d;w)
_ =1 E _ L=l
p(Zk | d]) — _Ni — p(Wl | Zk) = 5N
>, 2 nldwi) plaldywy) 33 nidwi) plaildwi)
=1 k'=1 j=1 i'=1



pLSA — Inference

' =® "\ Wi
p(d. w) = Hp(d)H Zp(z = k|d)) p(w; | z; = k) C " QV

Initialise p(zid;) and p(w;i|zr) to positive quantities

e E-step: Estimate the probability of each topic given the words in

each document
Pz d) p(w;|z)

Z,If,:l p(z | d) p(w;| )

p(Zk | dj’ Wi) —

e M-step: Re-estimate p(zid;), p(wi|z) given the revised p(zi dj,w;)
N- D
> nidyw) plaldw) D n(d,w) p(z| dw)
i : =1

p(yld) = —— pOwil2) = ——

Z n(dp Wi) p(Zk’l dja Wi)

=1 k'=1 ]

n(d;, wy) p(zx | dj, Wir)

i : D
=1 i'=1

~



pLSA and LSA
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YK Cxk
X Wk D N
Z n(d, w) p(z. | di, wy)
_ j=1 i=1
p(z) = N



pLSA and LSA

' =® "\ Wi
(dw>—Hp<d>H2p< = k) plwyl 5= b C s QV

i=1 k=1  TTTeell. D
.
* ...........
KX K el
“-h
LLSA NX D ~ NXK X X KX D
)2 Cx
X Wk D N
Z n(d, w) p(z. | di, wy)
j=1 i=1
(z) =
P\Z N]

Main difference: The two techniques have a ditferent objective
function — probabilistic vs. deterministic approach



pLSA — Disadvantages

(4)

i=1 k=1

D N K
p(d,w) = Hp(dj)H ZP(Zji = k|dj) p(w;;|z;; = k)
j=1

e The number of parameters that we need to infer
during training grows linearly with the number of

documents (D), which ultimately leads to

overtitting.

e pLSA learns p(zid;) only for the documents it

sees during the training phase. To

deal with a

new document, it needs to repeat |

CM (retrain).




Latent Dirichlet Allocation (LDA)

Nj

D K




Latent Dirichlet Allocation (LDA)

D K

— For each of the K topics draw a multinomial distribution [
from a Dirichlet distribution with parameter n

— For each of the D documents draw a multinomial distribution
0; from a Dirichlet distribution with parameter o

— For each word position ¢ (1 to N;) in a document 7:
— Select a latent topic z; from the multinomial distribution
parametrised by 0;
— Choose the observed word wj from the multinomial
distribution parametrised by Pz,



LDA — Generative story

Topics Documents Topic proportions

and assignments

gene 0.04

d 0.02 . . . -
gonetic 001 Seeking Life’s Bare (Genetic) Necessities
T COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” cspecially in

75 OO0

How many does an @rganism ncgd to - comparison to the 75,00C in the hu
/ survive! Last week at the genome meeting TRLCDOME, NOtes SSO1LONETTSaT:

here,* two genome researchers with radically

different approaches presented complemen-
life 0.02 tary views of the basic genes needed for|life.
evolve 0.01 One research team, using ‘ analy
oraanism  0.01 ses to compare known nes, concluded  more \
gani : that today’s oreganisms can be sustained with sequenced. “It may be a way of organizing
"1 just 25Q genes, and that the earliest life forms  any newly seq cxvl.nim <4
required a mere 128 The —— Arcady Mushegian, a computational mo / |_|
/ other researcher mapped genes . lecular biologist at the Natiaggl Center
/ \ \ D
in a simple parasite and esti-  / \ for Biotechnology Information TNCBI)
; / Haemophilus :
mated that for this organism, genome in Bethesda, Maryland. Comparing :
A { 1703 genes
brai 0.04 800 genes are plenty todo the |
rain : job—burt that anything short Sugciaiiny  Genes paras o specic dern genes g
heuron 0.02 0 wouldn't | \ Benes 5 1o tiocee =4 genes 122 genes =
. of 100 wouldn’t be \'HU\IL"L \/‘gacfmmo" 57\ o]
, { enesc u
nerve 0.01 Although the numbers don't = 22 genes
| _ [ 288 Minimal &
match l‘l'k'(l\k'l\', those | lictions | Mycoplasma cenes gene set 128 )
TR - \ genome \ 25090 OS
469genos \ , mricestral
/ \ S/
* Genome Mapping and Sequenc- S~
ing, Cold Spring Harbor, New York, Stnppmg down. | puter ar s yields an esti-
May 8 to 12 mate of the minimum modern and anmenl genomes.
data 0.02 IENCE o VOL. 27 MAY |
SCIENCE o OL. 272 * 24 MAY 1996
number 0.02
computer 0.01 |
|
L A I

-

Assume a number of topics, defined as distributions over words (far left).
A document is generated by first choosing a distribution over the topics
(far right), then for each word position choosing a topic assignment
(coloured coins), then choosing a word from the corresponding topic.

Blei. CACM, 2012. doi.org/10.1145/2133806.2133826


https://doi.org/10.1145/2133806.2133826
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/ survive! Last week at the genome meeting

here,* two genome researchers with radically

different approaches presented complemen-

life 0.02 tary views of the basic genes needed for|life.
dne researc e y computer : '
evolve 0.01 One research team, using computer analy
. 0.01 ses to compare known genomes, concluded MOre genOmes are g \
R . that today’s OFEEARISIAS can be sustained with  sequenced. “It may be a way of organizing
“1 just 250Q genes, and that the carliest life forms — any newly sequenc nome,” UX[‘]Jin\ <4
required a mere 128 genes. The J— Arcady Mushegian, a computati lmu / |_|
/ other researcher mapped genes // ™. lecular biologist at the Natic :
in a simple parasite and esti-  / A\ for Biotechnology Information TN ‘]%l\
: X / Haemophilus \ . .
mated that for this organism, genome in Bethesda, Maryland. Comparing ai
Y AA { 1703 genes
brai 0.04 800 genes are plenty todo the | | -
rain o job—but that anything short Gugeisaiay  Genes : - g
neuron 0.02 of 100 wouldn’t be enough. \,,;gmm X to bocran zzgenes
. 233 gerie -
nerve 0.01 Although the numbers don't -2 \ ‘”9""“ / o
match Pl‘x'(l\cl\‘ those predictions | Mycoplasma | { ; :‘;:‘,:":e'l (128 :
oo ‘ ' ST . \  genome \ genes \250 geres, geney)
469 genes / » meesral <
* Genome Mapping and Sequenc- ~—
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12 mate of the minimum modern and ancient genomes.
data 0.0z [ENCE o VOL. 4 MAY 199
SCIENCE & V( 272 ¢ 24 MAY 1996
number 0.02
computer 0.01 |
|
L A I

-
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Topics Documents Topic proportions

and assignments

gene 0.04

dna 0.02 . g9 . ags

genetic 0,01 Seeking Life’s Bare (Genetic) Necessities

Ty COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in
How many genes does an @rganism|ncgd to - comparison to the 75,000 in the hu

/ survive! Last week at the genome meeting

here,* two genome researchers with radically
different approaches presented complemen-

life 0.02 tary views of the basic genes needed for|life.
ne res rarc >4 S (4] mi t ¢ /
evolve 0.01 One research team, using 1 inaly
. 0.01 ses to compare known genomes, concluded  more \
R . that today’s OFEEARISIAS can be sustained with  sequenced. “It may be a way of organizing
"y just 25Q genes, and that the earliest life forms any newly el " explains <+
required a mere 128 gei The J— Arcady \1u~l\u'1 in, a computational mo / |_|
/ other researcher mapped genes y: ™ lecular biologist at (ln' Natic enter
in a simple parasite and esti-  / A\ for Biotechnology Information TNCBI)
t / Haemophilus R, .
mated that for this organism, | genome in Bethesda, Maryland. Comparing ai
aTe) { 1703 genes
brai 0.04 800 genesare plenty todo the | | Pecurdant ang -
rain - job—but that anything short Gdiacg) Gene specl g
heuron 0.02 of 100 wouldn’t be enough. \/éfgzm;on A 1ore -4 gones w22 geres 5
nerve 0.01 Although the numbers don't - 22 genes e l TN ! a
. ~recice v . AT | . [ 288 ) inimal 12811‘,‘
. IIlJILl\ I lk&l\tl\, lh\ SC [} lic 1 S \\ My;::;;’;na . genes g)n;of\ils \genes, i
469genes \. J — =
* Genome Mapping and Sequenc- ~—
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12 mate of the minimum modern and anment genomes.
SCIENCE e VOL. 272 ¢ 24 MAY 1996
F h of the K topics d Iti 1al
|
[

R distribution (over words) B from a Dirichlet
distribution with parameter




LDA — Generative story

Topics Documents Topic proportions

and assignments

gene 0.04

dna 0.02 . . . -
genetic 0.0l Seeking Life’s Bare (Genetic) Necessities
Ty COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in

How many genes does an @rganism|ncgd to - comparison to the 75,000 in the hu

/ survive! Last week at the genome meeting :nome, notes Siv Andersson o8Ser<ala
“oming up with a Con

here,* two genome researchers with radically
different approaches presented complemen-

life 0.02 tary views of the basic genes needed for|life.
evolve 0.01 One research team, using computer analy
ses to compare known genon concluded more

organism 0.01

that today’s oreganisms can be sustained with sequenced. “It may be a way of organizing
1 just 250 genes, and that the carliest life forms any newly 1e1 T oexplains

required a mere 128 gei The J— Arcady \1u~lu<'| in, a computational mo
\/ other researcher mapped genes // luul r lmxlm rist at (ln \ e | Center

in a simple parasite and esti 3

. / Haemophilus . .
mated that for this organism, [ genome | in Bcll\c\\l.a. .\I;n'\‘l«nnl. k,mnmrum al
A { 1703 genes
brai 0.04 oll genes are ]‘[L'IH\ todo the \ Redundar -
\ - parasite-specil g
rain : job—but that anything short Ay pares eSS g
neuron 0.02 of 100 wouldn’t be enough. \/i;:"g,:mw.mn PP for bix -4 gones 12 gores S
N / ene. Z - e
nerve 0.01 Although the numbers don't ] = 22 genes /o Z ! a
| [ Mummul A
. - N Ny e - 256 4 128 |\
o match precisely, those predictions \ i/ i g  genes g;";;g; genes) &
469 genes / \. J/ Tooal <
\/ \ S = ene
* Genome Mapping and Sequenc- ~—
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12 mate of the minimum modern and anment genomes.

For each of the D documents
draw a multinomial distribution

(over topics) 0; from a Dirichlet
distribution with parameter o

Nj

®
®




LDA — Generative story

Topics Documents Topic proportions

and assignments

gene 0.04
dna 0.02 . £y . sy
e 001 Seeking Life’s Bare (Genetic) Necessities
genetic :
Ty COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in
How many genes does an @rganism|ncgd to - comparison to the 75,000 in the hu
/ survive! Last week at the genome meeting :nome, notes Siv Andersson o¥sersala
here,* two genome researchers with radically - Swe —
different approaches presented complemen- “oming up with a Con
life 0.02 tary views of the basic genes needed for|life. er > more than just '
evolve 0.01 One research team, using computer analy
. 0.01 ses to compare known genomes, concluded  more \
R . that today’s OFEEARISIAS can be sustained with  sequenced. “It may be a way of organizing
T just 25Q genes, and that the earliest life forms any newly el " explains =1
required a mere 128 genes. The . Arcady Mushegian, mputational mo /
\/ other researcher mapped genes y: ™ lecular biologist at (ln Natic enter
in a simple parasite and esti-  / \ for Biotechnology Information TNCBI)
- ) / Haemophilus \ . . . .
mated that for this organism, | genome in Bethesda, Maryland. Comparing ai
800 genes are plenty todo the | w0l
. - S ¢ \ Re -
\ N . sl
brain 0.04 job—but that anything short iR Cl z z
heuron 0.02 of 100 wouldn’t be enough. \/E.‘szm A ot - w22 geres 5
nerve 0.01 Although the numbers don't PP 22 genes e l TN ! a
{ J— / ) inima | &
. match precisely, those predictions \\ M:é-‘gﬂ::;" ‘ gifﬁ,s zgs'.;n;;ius g‘jfcg ;
genes \. J —r =
\/ NG s e
* Genome Mapping and Sequenc- ~—
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12 mate of the minimum modern and anment genomes.
SCIENCE o VAN 279 ¢ 24 MAN 100

. — Select a latent topic z; from the multinomial
distribution parametrised by 0,




LDA — Generative story

Topics Documents Topic proportions

and assignments

gene 0.04

dna 0.02 . . . .y
genetic 0.0l Seeking Life’s Bare (Genetic) Necessities
Ty COLD SPRING HARBOR, NEW YORK—  “are not all that far apart,” especially in

How many genes does an BEgARISI nced to
/ survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-

comparison to the 75,000 genes in the hu
zenome, notes Siv Andersson oSS sala

life 0.02 tary views of the basic genes needed for life!

evolve 0.01 One research team, using computer analy \
. ses to compare known genomes, concluded  more genomes are g ctor~ssapped an \

organism  0.01 that today’s OFESARISIS can be sustained with  sequenced. “It may be a way of organizing

"1 just 25Q genes, and that the earliest life forms  any newly sequenced genome,” explains

required a mere 128 genes. The o Arcady Mushegian, a computational mo-
/ other researcher mapped genes '

lecular biologist at the Natic
in a simple parasite and esti

mated that for this organism,
800 genes are plenty todo the

i : - x £
brain 0.04 job—but that anything short Sosgenes 2
neuron 0.02 of 100 wouldn’t be enough. A §
nerve 0.01 Although the numbers don't \ ¢ =

. . \ w

match precisely, those predictions Mycoplasma | - £
) genome / \ /

469 genes / 3

/ * Genome Mapping and Sequenc-

gene set
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-
May 8 to 12. mate of the minimum modern and ancient genomes.

For each word position ¢ (1 to ;) in a document j:

L — Choose the observed word wj from the
multinomial distribution parametrised by p;

(W—(8 (o ——a) #1—@




LDA — Multinomial distribution (Mult)

Nj

D K

What is the probability of a set of outcomes for an event that has
multiple outcomes?

— We roll a 6-sided dice 5 times. What is the probability of getting
a “3” 1 time and a “6” 4 times?



LDA — Multinomial distribution (Mult)

Nj

D K

What is the probability of a set of outcomes for an event that has
multiple outcomes?

— We roll a 6-sided dice 5 times. What is the probability of getting
a “3” 1 time and a “6” 4 times?
51 (1 1\*
H#ways to get 1 / \

“37 and 4 “67s prob. of 1 “3” prob. of 4 “6”s



LDA — Multinomial distribution (Mult)

Nj

D K

What is the probability of a set of outcomes for an event that has
multiple outcomes?

— We roll a 6-sided dice 5 times. What is the probability of getting
a “3” 1 time and a “6” 4 times?
1

51 1\*
H#ways to get 1 / \

“37 and 4 “67s prob. of 1 “3” prob. of 4 “6”s
n!

Formally: p(ny,....n) = r y pteeoptogiven n, {py, ..., pi}
1-'...' k.




LDA — Dirichlet distribution (Dir)

@ ®

D

K

O

Exponential family distribution over the simplex (= positive

vectors with elements that sum up to 1), essentially a

distribution over multinomial distributions

F(Zi o)

pO|o) = —

1o, T (“k)

K

.ngk—l where T'(n) = —1)!
k=1

Parameter a controls the mean shape and sparsity of 0 (same for 3)

Note: a is a vector of K (= number of topics) parameters for @ and n

has V parameters for §, where V is the size of the entire vocabulary

(unique words across all D documents)



LDA — Dirichlet distribution (Dir)

N;

D K

Assume a simplex 0 = |01, 02, 03] across K = 3 topics (0<60:<1).
How do different values for a affect the 0 produced by the Dirichlet
distribution? Let’s plot 5,000 samples for different a’s.

a=100x[0.33, 0.33, 0.33]

21

1

087

0.6

~—

5=
0.4

0.2

0

Large values of a lead to more dense 0’s



LDA — Dirichlet distribution (Dir)

N;

D K

Assume a simplex 0 = |01, 02, 03] across K = 3 topics (0<60:<1).
How do different values for a affect the 0 produced by the Dirichlet
distribution? Let’s plot 5,000 samples for different a’s.

o= 100 x[0.33, 0.33, 0.33] L o= 10 x[0.33, 0.33, 0.33]
21 <1

0.8 0.8 ¢
0.6 0.6

04|

02 [ 02 L

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Large values of a lead to more dense 0’s



LDA — Dirichlet distribution (Dir)

@ —®—F0

D K

o

—®

Assume a simplex 0 = |01, 02, 03] across K = 3 topics (0<60:<1).
How do different values for a affect the 0 produced by the Dirichlet
distribution? Let’s plot 5,000 samples for different a’s.

a = 15x[0.71, 0.14, 0.14]

~a = 15x[0.14, 0.71, 0.14]

21

0.5 1

087

0.6

0.4

0.2

~a = 15x[0.14, 0.14, 0.71]

21

Imbalance in o shapes the focus of the distribution



LDA — Dirichlet distribution (Dir)

D K

Assume a simplex 0 = |01, 02, 03] across K = 3 topics (0<60:<1).
How do different values for a affect the 0 produced by the Dirichlet
distribution? Let’s plot 5,000 samples for different a’s.

~a =0.7x[0.33, 0.33, 0.33]
A2
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Values of o < 1 create increasingly sparse outputs



LDA — Dirichlet distribution (Dir)

D K

Assume a simplex 0 = |01, 02, 03] across K = 3 topics (0<60:<1).
How do different values for a affect the 0 produced by the Dirichlet
distribution? Let’s plot 5,000 samples for different a’s.

, a= 0.7 x[0.33, 0.33, 0.33] . a= 0.7 x[0.9, 0.05, 0.05]
SER (21
0.8 0.8
0.6 0.6
— | ‘ y %1— \

0.4 Y4 0.4 \

02F 4 02 /
o MBS e s g TR N | -\
-1 0.5 0 0.5 1 -1 05 0 0.5 1

(93 92 93 (92

Values of o < 1 create increasingly sparse outputs



LDA — Dirichlet distribution (Dir)

@7

N;
D K

—®

Assume a simplex 0 = |01, 02, 03] across K = 3 topics (0<60:<1).
How do different values for a affect the 0 produced by the Dirichlet
distribution? Let’s plot 5,000 samples for different a’s.

087

0.6

04|

0.2

~a =0.7x[0.33, 0.33, 0.33]

o2 B

-1 -0.5 0

0.5

. a= 0.7 x[0.9, 0.05, 0.05]

0.8

0.6

04r

0.2

-0.5 0 0.5

087

0.6

0.4

0.2

a =0.01x[0.33, 0.33, 0.33]

Ve 1\
/ \
// \\
/ \
/ \
/
/ \
/ \\

/ \\
/ \\
/ \

/ \
1 0.5 0 0.5
0 3" 0 5

Values of o < 1 create increasingly sparse outputs



LDA — Why combine Dir and Mult distributions?

Nj

D K

e 'The Dirichlet distribution is conjugate to the
Multinomial distribution

e Posterior p(|n,w) and prior p(p|n) belong to the same
distribution family as the prior (Dirichlet) given that
p(w|P) is a Multinomial and p(f3|n) a Dirichlet

e Abstracting the math, observed data (w) are adding to
our prior intuition () about how words relate with
topics



LDA — Inference

® -

()

(o)
()

Nj

D K

Joint probability distribution

K D
p(w.0.B.zle.m) = [ [ i) [ | p(6; 1)
k=1 j=1

(N,

HP(Zji|9j) P(wji|f31:1<» Zji
 i=1

We are interested in this posterior

p(ea ﬁa Z, l/UlOC,T])
/(3 Jo 2. P6,B, z, wla,n)

p0,B, zlw, M) =

can’t compute — approximate inference



LDA — Inference; Gibbs sampling

Initialise probabilities randomly or uniformly

In each step, replace the value of one of the variables
by a value drawn from the distribution of that variable
conditioned on the values of the remaining variables

e Repeat until convergence

Inmtialisex;, i = 1,...,N

Forr=1,...,T:

Samplexl(t“) ~p | x |x2(t), ...,xﬁ?)

Sample x\"tD ~ p ( x, | xO+D, x1 x(t)>

2 1 73N
t+1) (t+1) (t+1) .(2) (1)
1T Xy T s XL X s Xy

Sample xj(t“) ~p (x-l

Sample x(*1 ~ p (x| x+D, x}g:n)



LDA — Inference; Gibbs sampling

Initialise probabilities randomly or uniformly

Go over each word ¢ in every document j (w;)

Eistimate the probability of assigning wj; to each topic,
conditioned on the topic assignments (z;-;) of all other words
w;—i (notation indicating the exclusion of wy)




LDA — Inference; Gibbs sampling

Initialise probabilities randomly or uniformly

Go over each word ¢ in every document j (w;)

Eistimate the probability of assigning wj; to each topic,
conditioned on the topic assignments (z;-;) of all other words
w;—i (notation indicating the exclusion of wy)

(z klz;, _,,w,o,n) Mjke—i T O =i T M,
.. = . W, X, X .
p J1 J>—1 TI V
Z nj,kl,_i + Otk/ Z mk,v,_l‘ + r]U
k=1 v=1




LDA — Inference; Gibbs sampling

e Initialise probabilities randomly or uniformly

e Go over each word ¢ in every document 5 (wj;)

e [Listimate the probability of assigning w; to each topic,
conditioned on the topic assignments (z;—;) of all other words
w;—i (notation indicating the exclusion of wy)




LDA — Inference; Gibbs sampling

Initialise probabilities randomly or uniformly

Go over each word i in every document j (w;)

Eistimate the probability of assigning wj; to each topic,
conditioned on the topic assignments (z;-;) of all other words
w;—i (notation indicating the exclusion of wy)

(z klz;, _,,w,o,n) Mjke—i T O =i T M,
.. = . W, X, X .
p J1 J>—1 TI V
Z nj,kl,_i + Otk/ Z mk,v,_l‘ + r]U
k=1 v=1

How much does document  How much does topic
9 “like” topic k? k “like” word wj;?

o O[O @ @ @




LDA — Inference; Gibbs sampling

e Initialise probabilities randomly or uniformly

e Go over each word 7 in every document j (wj;)

e [Listimate the probability of assigning w;j to each topic,
conditioned on the topic assignments (z;-;) of all other words
wj-i (notation indicating the exclusion of «+ How much does topic

k “like” word wj;?!

Rk —i + a mk,wj,-,—i T "ij,.
p(ZJl — kle,—i’ W, “,TI) X ¢ v

How much does document Zl jgr—i T X Z} My p—i T Hy
k - D=

7 “like” topic k7

e From the above conditional distribution, sample a topic and
set it as the new topic assignment zj; of wj;

o O[O @ @ @

D K




LDA — Gibbs sampling; toy example

— Consider K = 3 topics
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LDA — Gibbs sampling; toy example

— Consider K = 3 topics
— Sampling from document j (word order doesn’t matter)
— Randomly assign topics to all words in document j (and all other docs)

document j

Wi; Brexit deficit Furope market single




LDA — Gibbs sampling; toy example

— Consider K = 3 topics

— Sampling from document j (word order doesn’t matter)

— Randomly assign topics to all words in document 5 (and all other docs)
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LDA — Gibbs sampling; toy example

— Consider K = 3 topics

— Sampling from document j (word order doesn’t matter)

— Randomly assign topics to all words in document 5 (and all other docs)
— Update the word-topic counts for all documents

— Sample the first word (“Brexit”) in document j; unassign it from topic 3

and decrement its count in the word-topic counts
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— Consider K = 3 topics

— Sampling from document j (word order doesn’t matter)
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LDA — Gibbs sampling; toy example

— Randomly assign topics to all words in document j (and all other docs)

— Update the word-topic counts for all documents

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 3?7
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LDA — Gibbs sampling; toy example

— Update the word-topic counts for all documents

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 57

— How much does each topic “like” the word “Brexit”?
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LDA — Gibbs sampling; toy example

— Update the word-topic counts for all documents

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 57

— How much does each topic “like” the word “Brexit”?
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LDA — Gibbs sampling; toy example

— Update the word-topic counts for all documents

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 57
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LDA — Gibbs sampling; toy example

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 57

— How much does each topic “like” the word “Brexit”?

— Sample from the revised conditional distribution p(z;; = k|z; _;, w,a,m)
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LDA — Gibbs sampling; toy example

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 57
— How much does each topic “like” the word “Brexit”?

— Sample from the revised conditional distribution p(z;; = klz; _;, w,,n)
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LDA — Gibbs sampling; toy example

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 57

— How much does each topic “like” the word “Brexit”?

— Sample from the revised conditional distribution p(z;; = klz; _;, w,a,m)

— Assign the sampled topic to the word “Brexit” and update counts
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LDA — Gibbs sampling; toy example

— Sample the first word (“Brexit”) in document j; unassign it from topic 3

and decrement its count in the word-topic counts
— What are the revised topic proportions in document 57
— How much does each topic “like” the word “Brexit”?
— Sample from the revised conditional distribution p(z;; = klz; _;, w,a,m)

— Assign the sampled topic to the word “Brexit” and update counts
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LDA — Gibbs sampling; toy example

— Sample the first word (“Brexit”) in document j; unassign it from topic 3
and decrement its count in the word-topic counts

— What are the revised topic proportions in document 57

— How much does each topic “like” the word “Brexit”?

— Sample from the revised conditional distribution p(z;; = klz; _;, w,a,m)

— Assign the sampled topic to the word “Brexit” and update counts
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FEvaluating topics

It depends on what the topics are for!

If they are generated for an end task with a measure-able
performance, then we it makes sense to use this metric, i.e.
the performance of the end task as a proxy for the value of

the topic (Note: LDA tends to underperform in such
settings)

Compute the probability of generating held-out documents
(the higher the better)

Word intrusion: Show words from topics to human judges

(crowdsourcing) with out-of-topic words inserted (intruders).
How often can they identify the word that does not belong?



Part Il — Vector semantics



Words as vectors

We’ve seen that documents can be represented as vectors of
word frequencies

Words can also be represented as multi-dimensional vectors

Property to exploit: words that occur in similar contexts (co-
occur) tend to have similar meanings

“You shall know a word by the company it keeps”
John Rupert (J. R.) Firth (1957)
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— My new W is much thinner than my previous one.
— I prefer to work from remote locations using a W.

— This old W has less RAM than my new smartphone.
— With a 15-inch display, it’s not a W anymore!



Words as vectors

Property to exploit: words that occur in similar contexts (co-
occur) tend to have similar meanings

— My new W is much thinner than my previous one.
— I prefer to work from remote locations using a W.
— This old W has less RAM than my new smartphone.

— With a 15-inch display, it’s not a W anymore!

Co-occurs with: “my”, “thinner”, “remote”, “smartphone”,
“RAM”, “display”

Occurs after: “my”, “a”, “new”, “old”, “display”

Occurs before: “has”, “RAM”, “thinner”

44



Words as vectors

Property to exploit: words that occur in similar contexts (co-
occur) tend to have similar meanings

— My new W is much thinner than my previous one.
— I prefer to work from remote locations using a W.
— This old W has less RAM than my new smartphone.

— With a 15-inch display, it’s not a W anymore!

Co-occurs with: “my”, “thinner”, “remote”, “smartphone”,
“RAM”, “display”

Occurs after: “my”, “a”, “new”, “old”, “display”

Occurs before: “has”, “RAM”, “thinner”

W = laptop / notebook / tablet

44
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— a.k.a. word-context or word co-occurrence matrix



Words as vectors

o (Generate a word-word matrix
— a.k.a. word-context or word co-occurrence matrix

e If the size of our vocabulary (all words) is V, then the size of
this matrix is commonly V X V

e Fach cell of the matrix counts how many times two words co-

occur within a predefined context



Words as vectors

(zenerate a word-word matrix
— a.k.a. word-context or word co-occurrence matrix

If the size of our vocabulary (all words) is V, then the size of
this matrix is commonly V X V

Each cell of the matrix counts how many times two words co-

occur within a predefined context

Possible contexts: entire document, a paragraph in a document,

a sentence, a number of words (window, commonly + 4 words)

.. more succinct definition of computer science is the study...
.. analysis and study of algorithms, discipline of computer science...
.. the arrival of Japanese mandarin oranges signalled the real...
.. of pomelo and mandarin, orange has genes from both...



Words as vectors

. more succinct definition of computer science is the study...
. analysis and study of algorithms, discipline of computer science...
. the arrival of Japanese mandarin oranges signalled the real...
. of pomelo and mandarin, orange has genes from both...

_______________________________________________________________ data ...  fruit .. Python ...
Calgorithms .. 100 .. 2 . 250 ..
Ccomputer .. 300 .. 5 .. w0 .
"""" mandarin ... 1 . .. 300 ... 0 ..

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''




Words as vectors

e data e fruit | ... Python = ...
Calgorithms .. 250 .. 2 .. 100 ..
Ccomputer .. 500 .. 5 .. a0 ..
_mandarin .. 1 .. 300 .. 0
""""" e IS N R R S A R

computer (500,300)

100 algorithms (250,100)

250 500 data



Words as large, sparse vectors

Recap: Word-context matrix of size V' X V where V' is the
length of the vocabulary

Large matrix as V is often very large (>100,000)

Sparse matrix as many entries will be 0
(not all words co-occur in all contexts)



Words as large, sparse vectors

Recap: Word-context matrix of size V' X V where V' is the
length of the vocabulary

Large matrix as V is often very large (>100,000)

Sparse matrix as many entries will be 0
(not all words co-occur in all contexts)

Small context window: a more syntactic representation

Longer context window: a more semantic representation



Measuring word association — PMI

Raw word counts are not the best measure for word association
— skewed towards frequent /infrequent words, non discriminative

Pointwise Mutual Information (PMI) is a measure of how often

two events (co-)occur, compared to what we would expect if
these events were independent

Centre (target) word w;, context word c;



Measuring word association — PMI

Raw word counts are not the best measure for word association
— skewed towards frequent /infrequent words, non discriminative

Pointwise Mutual Information (PMI) is a measure of how often

two events (co-)occur, compared to what we would expect if
these events were independent

Centre (target) word w;, context word c;

p(wia C])
p(w;) - p(c;)

Numerator: How often we have seen the words together

Denominator: How often we expect the words to co-occur,
assuming they are independent

PMI: how much more w;, ¢; co-occur than expected by chance



Positive Pointwise Mutual Information (PPMI)

e PMI ranges in (—oo,+0)

e Negative PMI values are harder to interpret and evaluate;
“relatedness” is easier to evaluate as opposed to
“unrelatedness”

e Force positivity — Positive PMI (PPMI)

p(wia C])
p(wy) - p(c;) |




Computing PPMI

Assume a word-context matrix A of size VX C(C; generalisation of

the word-word matrix, where the C contexts may not be identical
to the V target words. Let’s generate a PPMI matrix from that.

p(wi7 C])
PPMI(w;, ¢;) = max | log, 0

pwy) - p(c)) ,



Computing PPMI

Assume a word-context matrix A of size VX C(C; generalisation of

the word-word matrix, where the C contexts may not be identical
to the V target words. Let’s generate a PPMI matrix from that.

p(wi7 C])
PPMI(w;, ¢;) = max | log, 0

pwy) - p(c;) ,
(w,, c;) = " # target word w; co-occurs with context word c;
PR 60 = ZV (ZC n) divided by the total count of word occurrences in
=1 j=1"4 the corpus
p(w,) = =1 Y # target word w; appears in the corpus (sum of
Ty (yC row i of A) divided by...
Z:i=1 (zj=1 nij) ) Y

v
Z # context word ¢; appears in the corpus (sum of

i=1 Tij
Zivzl Z]C:l n,-j> column j of A) divided by...

p(Cj) =



Computing PPMI

Assume a word-context matrix A of size VX (' generalisation of

the word-word matrix, where the C contexts may not be identical
to the V target words. Let’s generate a PPMI matrix from that.

p(wi’ CJ)
PPMI(w;, ¢;) = max | log, ,0

p(wy) - p(c;)
p(w., ) = j # tax, We can use the PPMI matrix to
- > (chn J> d}iVide measure how (semantically)
=LA 6 .. .
" similar different words are. We
€ need a similarity metric for that.
p(W) = /=1 g # targL
Sy ( ) row i of A) divided by...
i=1 =1 l]
Y
p(c) = i=1 U # context word c¢j appears in the corpus (sum of
J

Vv C . e
> 1 ZJ 1nlj> column j of A) divided by...
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Measuring word similarity — Cosine

N

Dot product between word vectors w, v: w'v = Z w; -V,
i=1

Larger values for longer vectors and for frequent words

Normalise it by dividing with the length of the vectors! Leads
to cosine similarity, i.e. the cosine of the angle (¢) between

the two vectors

cosine-sim(w, v) = = = COS ¢




Measuring word similarity — Cosine

N

Dot product between word vectors w, v: w'v = Z w; -V,
i=1

Larger values for longer vectors and for frequent words

Normalise it by dividing with the length of the vectors! Leads
to cosine similarity, i.e. the cosine of the angle (¢) between
the two vectors

cosine-sim(w, v) = = = COS ¢

Since w and v > 0, cosine-sim(w,v) ranges from [0,1]
— cosine-sim(w,v) = 0 means that ¢ = 90°
— cosine-sim(w,v) = 1 means that ¢ = 0°



Measuring word similarity — Cosine

, , iy Wi Vi w 'y
cosine-sim(w, v) = = = COS ¢

N ) lwl|v|
\/Zi=1wi \/zizlvi

e Since wand v > 0, cosine-sim(w,v) ranges from [0,1]

— cosine-sim(w,v) = 0 means that ¢ = 90°
— cosine-sim(w,v) = 1 means that ¢ = 0°

=

S

=

>

R 4
300 computer (500,300)
100 ¢/, algorithms (250,100)

>
250 500 ata

cosine-sim(computer, algorithms) = 0.9872, ¢ = 9.162°



From sparse to dense word vectors

e Previously shown word representations: long (equal to size of
the vocabulary V) and sparse (many 0’s)



From sparse to dense word vectors

Previously shown word representations: long (equal to size of
the vocabulary V) and sparse (many 0’s)

Short and dense representations have advantages

— easier to use as features in statistical learning methods
— capture synonymy better

— generalise better

KX K

NX K X X KX D

Q

LSA NXD

YK Ck

X Wk

Recall Latent Semantic Analysis (LSA), 7.e. SVD on the
word-document matrix (X). What if we perform SVD on a

word co-occurrence matrix?



SVD on the PPMI word-context matrix

EXk

SVD m X ¢ m Xk X X kX c

Q

PPMI \%



SVD on the PPMI word-context matrix

EX k
"”
"0 ’.0” ’0’ ‘0’
* * * *
SVD m X ¢ s m X k X -, X EX c
‘0‘ *e " ‘0’ *e .
“ * * *
*
D U

PPMI \%



SVD on the PPMI word-context matrix

Vi
kX k
SVD mX ~ omXk X EE < kX c
V;
x U
PPMI v

e V,;is a k-dimensional vector that represents word ¢ in our
vocabulary. It is also know as a word embedding. Commonly, £
= 300, i.e. V;is short and dense.



SVD on the PPMI word-context matrix

Vi
kX k
SVD mX ~ omXk X EE < kX c
V;
x U
PPMI v

V,;is a k-dimensional vector that represents word 7 in our

vocabulary. It is also know as a word embedding. Commonly, £
= 300, i.e. V;is short and dense.

Downside: SVD has a significant computational cost ~ O(mk?)



Word embeddings from prediction

e Same intuition, different approach
— words with similar meanings will co-occur

— instead of counting co-occurrences, predict them



Word embeddings from prediction

Same intuition, different approach
— words with similar meanings will co-occur

— instead of counting co-occurrences, predict them

Popular example: word2vec — title of the software library, but
there is a small family of methods behind it

= Algorithms
e skip-gram: Predict the context (surrounding) words based

on a centre word
¢ CBOW (continuous bag-of-words): Predict a centre word

based on the context words

= Training methods
e Hierarchical softmax
e Negative sampling



Word embeddings from prediction

Same intuition, different approach
— words with similar meanings will co-occur

— instead of counting co-occurrences, predict them

Popular example: word2vec — title of the software library, but
there is a small family of methods behind it

= Algorithms
e skip-gram: Predict the context (surrounding) words based
on a centre word
¢ CBOW (continuous bag-of-words): Predict a centre word
based on the context words

= ‘Training methods
e Hierarchical softmax
e Negative sampling

e Naive softmax



word2vec — skip-gram

.. said that “Hey Jude” is Beatles’ most famous song, but...



word2vec — skip-gram

.. said that “Hey Jude” is Beatles’ most famous song, but...

T

centre word
Wt



word2vec — skip-gram

context words context words
Wt-3, W2, Wt-1 Wt+1, Wt+2, Wt+3
said that “ ” is:Beatles’: ; but

T

centre word

h Wt :
context radius context radius



word2vec — skip-gram

context words context words
Wt-3, W2, Wt-1 Wt+1, Wt+2, Wt+3
said that :“ ” i Beatles’: ; but
plwdw) T | p(wnsiwy) 7

centre word

h Wt :
context radius context radius



skip-gram — Simplified objective function

For each word position ¢ out of T, predict the context words using
a fixed radius L (or symmetric window 2L)

Objective: Maximise the probability of any context word given the
current centre word (position of surrounding words does not

matter)
T L

maXH H P (wm- | wt)

t=1 i=—L, i#0



skip-gram — Simplified objective function

For each word position ¢ out of T, predict the context words using
a fixed radius L (or symmetric window 2L)

Objective: Maximise the probability of any context word given the
current centre word (position of surrounding words does not

matter)
T L
maXH H P (wt+i|wt)
t=1 i=—L, i#0

Prefer to minimise things, and sums over products

Minimise the mean (across all T samples) negative log likelihood

L

min% — i Z log (P (Wt+i | Wt))

t=1 i=—L, i#0



skip-gram — Simplified objective function

For each word position ¢ out of T, predict the context words using
a fixed radius L (or symmetric window 2L)

Objective: Minimise the negative log likelihood of the probability
of any context word given the current centre word

] T L
min =~ Z Z log (p (WH_Z- | wt)>
t=1 i=—L, i#0

How are we going to minimise this?



skip-gram — Simplified objective function

For each word position ¢ out of T, predict the context words using
a fixed radius L (or symmetric window 2L)

Objective: Minimise the negative log likelihood of the probability
of any context word given the current centre word

mln—[ i i 108( Wz+i|wt)>J

=1 i=—L, i#0

— Assume that each centre word (¢) has a k-dimensional vector
representation v.; all m words are held in an Axm matrix V

— Assume that each context word has a kdimensional vector
representation u,; all m words are help in an kxm matrix U

— Thus, the model parameters (=2mk) are now 0 = |V U]

mln—[ i i 10g< Wt+ilwt;9)>]

t=1 i=—L, i#0



SVD on the PPMI word-context matrix

Vi
kX k
SVD mX ~ omXk X IEE < kX c
V;
x U
PPMI v

e V,;is a kdimensional vector that represents word 2 in our

vocabulary. It is also know as a word embedding. Commonly,
k = 300, i.e. V; is short and dense.

e SVD has a significant computational cost O(mk?).



skip-gram — Simplified objective function

For each word position ¢ out of T, predict the context words using
a fixed radius L (or symmetric window 2L)

Objective: Minimise the negative log likelihood of the probability
of any context word given the current centre word

mln—[ i i 108( Wz+i|wt)>J

=1 i=—L, i#0

— Assume that each centre word (¢) has a k-dimensional vector
representation v.; all m words are held in an Axm matrix V

— Assume that each context word has a kdimensional vector
representation u,; all m words are help in an kxm matrix U

— Thus, the model parameters (=2mk) are now 0 = |V U]

mln—[ i i 10g< Wt+ilwt;9)>]

t=1 i=—L, i#0



skip-gram — Simplified objective function

T L
mln— Z Z 10g< wt+i|wt;9)>
t=1 i=—L, i#0

We need an estimate of the probability p(wii|wy)
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T L
mln— Z Z 10g< wt+i|wt;(9)>
t=1 i=—L, i#0

We need an estimate of the probability p(wsi|w)

Use a (bad) measure of similarity (dot product) and normalise it
using a common approach in neural networks, the softmax
function (squashes vector elements to a (0, 1) range)



skip-gram — Simplified objective function

T L
mln— Z Z 10g< wt+i|wt;(9)>
t=1 i=—L, i#0

We need an estimate of the probability p(wsi|w)

Use a (bad) measure of similarity (dot product) and normalise it
using a common approach in neural networks, the softmax
function (squashes vector elements to a (0, 1) range)

Assuming a vocabulary of m words, for a centre word ¢ (v.) and
a context word z (u,)

exp (uTV )

m
5 exp (ulv,

w=]1

pix|c) =



skip-gram — In practice...

.
w, = [OO U O] centre word as an one-hot vector

get its vector representation (embedding) from the

v.=V. .w, . ,
matrix of centre word embeddings

T dot product with all context word vectors
o=U"-v, ,
m (voc. size) x 1

compute the softmax of this vector
p,,, = softmax(o); this is the probability of word z, but we shall

l

focus on the 2L context words

€.8 Pv 05




word2vec — skip-gram

context words context words
Wt-3, W2, Wt-1 Wt+1, Wt+2, Wt+3
said that :“ ” i Beatles’: ; but
plwdw) T | p(wnsiwy) 7

centre word

h Wt :
context radius context radius



skip-gram — In practice...

.
w, = [OO U O] centre word as an one-hot vector
_ get its vector representation (embedding) from the
Ve = \A W, : :
matrix of centre word embeddings
T dot product with all context word vectors
o=U"-v,

m (voc. size) x 1

compute the softmax of this vector
p,,, = softmax(o); this is the probability of word z, but we shall

l

focus on the 2L context words

0.1 0

04| 0 but we also know the correct answer!

oo 0 . .

0.0 . In this case, we need to improve our
€8 Pu  |oos — |0 :

0051 L0 embeddings (V and U).

0.25 1

008 | o | In neural nets: do error back-propagation.

0.02 0




skip-gram — Negative sampling
Naive / inefficient way for parameter inference
L L
IO === Y log(p(wlw:0))
=1 i=—L, i#0

Gradient descent
0,01 = 0,+7V,J(©0)

Too slow and computationally expensive. Recall:
exp (u,v,)

The denominator is too expensive to pxlc) =—;
compute (for large vocabularies) exp (u,v.)

w=1



skip-gram — Negative sampling
Naive / inefficient way for parameter inference
L L
J(0) = __Z Z log (]7 (Wt+i|Wr;(9>>
D3 2L 0

Gradient descent
0,01 = 0,+7V,J(©0)

Too slow and computationally expensive. Recall:

exp (u,v,)
The denominator is too expensive to pxlc) =—;
compute (for large vocabularies) Z exp (u,v.)

w=1

Negative sampling: For each context word sample non-
neighbouring words as “negative” samples

New objective: High dot product with context words and low
dot product with “negative” samples



skip-gram — Stochastic gradient descent

Naive / inefficient way for parameter inference

1 T L
J(9)=_?Z Z log(p(wt+ilwt;9>>

t=1 i=—L, i#0

Gradient descent

0,01 =0, +7VJ(0,)

Too slow and computationally expensive.



skip-gram — Stochastic gradient descent

Naive / inefficient way for parameter inference

1 T L
J(9)=_?Z Z log(p(wt+ilwt;9>>

t=1 i=—L, i#0

Gradient descent
0,01 = 0,+7V,J(©0)

Too slow and computationally expensive.

Apply stochastic gradient descent:

i.e. instead of going through all the data for computing the
egradient of V,J(0)

we use one or small subsets of the data (mini batches) to
update the gradient



Word analogies with word embeddings

vector(‘king’)—vector(‘man’)+vector(‘woman’) = vector(‘queen’)
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Word analogies with word embeddings

vector(‘king’)—vector(‘man’)+vector(‘woman’) = vector(‘queen’)

More formally:  arg max (cos <b, a—a,+ bp>)
beV

In this example, if:

a = vector(‘king’)

ap = vector(‘man’)

b, = vector(‘woman’)

Then, when we compute the cosine similarity of (a—ay+b,) with
the embeddings of all the V words in our corpus, we expect
b = vector(‘queen’) to have the greatest one.



Word analogies with word embeddings

vector(‘king’)—vector(‘man’)+vector(‘woman’) = vector(‘queen’)

More formally:  arg max (cos <b, a—a,+ bp>)
beV

In this example, if:

a = vector(‘king’)

ap = vector(‘man’)

b, = vector(‘woman’)

Then, when we compute the cosine similarity of (a—ay+b,) with
the embeddings of all the V words in our corpus, we expect
b = vector(‘queen’) to have the greatest one.

This generates the analogy: a, is for a, what b, is for b
or man is for king, what woman is for queen



Word analogies with word embeddings

vector(‘king’)—vector(‘man’)+vector(‘woman’) = vector(‘queen’)

More formally:  arg max ( COS ( b,a—a, + bn\)\

WOMAN
15 / /
q MAN
UNCLE
a
UEEN
1 KING

AUNT

QUEENS

KINGS \

QUEEN

/7

KING

the embeddings of all the V words in our corpus, we expect

b = vector(‘queen’) to have the greatest one.

This generates the analogy: a, is for a, what b, is for b

or man is for king, what woman is for queen



Word embeddings based on UK Twitter data

word2vec embeddings

— trained on 1.1 billion tweets from 2012 to 2016, geolocated
in the UK

— tweets represent current trends, include informal forms of
language, and are often topic-consistent

— 9512 dimensions, 470,194 words covered

— availlable online: figshare.com/articles/UK Twitter word embeddings II /5791650


https://figshare.com/articles/UK_Twitter_word_embeddings_II_/5791650

Twitter word embeddings — Similarities

Most similar words (top-5) to:

e Monday: Tuesday, Thursday, Wednesday, Friday, Sunday

e January: February, August, October, March, June

e red: yellow, blue, purple, pink, green

e we: they, you, we’ve, our, us

e espresso: expresso, cappuccino, macchiato, latte, coffee

e linux: Unix, Centos, Debian, Ubuntu, Redhat

e retweet: rt, tweet, retweets, retweeting, rewteet

e democracy: democratic, dictatorship, democracies, socialism,

undemocratic
e loool: looool, lool, loooool, looooool, loooooool

® XXXX: XXXXX, XXX, XXXXXXXX, XXXXXX, XXXXXXX

e enviroment: environment, environments, env, enviro, habitats




Twitter word embeddings — Analogies

‘she’ is to ‘her’ what ‘he’ isto ... | 7|

‘Rome’ is to ‘Italy’ what ‘London’ is to ... | 7 |
‘go’ is for ‘went’ what ‘do’ is to... | 7|

‘big’ is to ‘bigger’ what ‘small’ is to... [ 7 |
‘poet’ is to ‘poem’ what ‘author’ is to... [ 7 |
‘Messi’ is to ‘football” what ‘Lebron’ is to... [ ? |
‘Elvis’ is to ‘Presley’ what ‘Aretha’ is to... | 7 |
‘UK’ is for ‘Brexit’ what ‘Greece’ is to... | 7 |

‘UK’ is for ‘Farage’ what ‘USA’ is to... | 7 |
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Twitter word embeddings — Analogies

‘she’ is to ‘her’ what ‘he’ is to ... |his, him, himself]

‘Rome’ is to ‘Italy’ what ‘London’ is to ... [UK, Denmark, Sweden|
‘go’ is for ‘went’ what ‘do’ is to... | 7|

‘big’ is to ‘bigger’ what ‘small’ is to... [ 7 |

‘poet’ is to ‘poem’ what ‘author’ is to... [ 7 |

‘Messi’ is to ‘football” what ‘Lebron’ is to... [ ? |

‘Elvis’ is to ‘Presley’ what ‘Aretha’ is to... | 7 |

‘UK’ is for ‘Brexit’ what ‘Greece’ is to... | 7 |

‘UK’ is for ‘Farage’ what ‘USA’ is to... | 7 |
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‘she’ is to ‘her’ what ‘he’ is to ... |his, him, himself]

‘Rome’ is to ‘Italy’ what ‘London’ is to ... [UK, Denmark, Sweden|
‘go’ is for ‘went’ what ‘do’ is to... |did, doing, happened|

‘big’ is to ‘bigger’ what ‘small’ is to... [ 7 |

‘poet’ is to ‘poem’ what ‘author’ is to... [ 7 |

‘Messi’ is to ‘football” what ‘Lebron’ is to... [ ? |

‘Elvis’ is to ‘Presley’ what ‘Aretha’ is to... | 7 |

‘UK’ is for ‘Brexit’ what ‘Greece’ is to... | 7 |

‘UK’ is for ‘Farage’ what ‘USA’ is to... | 7 |



Twitter word embeddings — Analogies

‘she’ is to ‘her’ what ‘he’ is to ... |his, him, himself]

‘Rome’ is to ‘Italy’ what ‘London’ is to ... [UK, Denmark, Sweden|
‘go’ is for ‘went’ what ‘do’ is to... |did, doing, happened|

‘big’ is to ‘bigger’ what ‘small’ is to... [smaller, larger, tiny|

‘poet’ is to ‘poem’ what ‘author’ is to... [ 7 |

‘Messi’ is to ‘football” what ‘Lebron’ is to... [ ? |

‘Elvis’ is to ‘Presley’ what ‘Aretha’ is to... | 7 |

‘UK’ is for ‘Brexit’ what ‘Greece’ is to... | 7 |

‘UK’ is for ‘Farage’ what ‘USA’ is to... | 7 |



Twitter word embeddings — Analogies

‘she’ is to ‘her’ what ‘he’ is to ... |his, him, himself]

‘Rome’ is to ‘Italy’ what ‘London’ is to ... [UK, Denmark, Sweden|
‘go’ is for ‘went’ what ‘do’ is to... |did, doing, happened|

‘big’ is to ‘bigger’ what ‘small’ is to... [smaller, larger, tiny|

‘poet’ is to ‘poem’ what ‘author’ is to... [novel, excerpt, memoir]|
‘Messi’ is to ‘football” what ‘Lebron’ is to... |[basketball, bball, NBA]
‘Elvis’ is to ‘Presley’ what ‘Aretha’ is to... [Franklin, Ruffin, Vandross]
‘UK’ is for ‘Brexit’ what ‘Greece’ is to... |Grexit, Syriza, Tsipras|

‘UK’ is for ‘Farage’ what ‘USA’ is to... |Trump, Farrage, Putin|



Part 111 — Applications
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ABSTRACT

Recent advances in Natural Language Processing and Machine Learning provide us with
the tools to build predictive models that can be used to unveil patterns driving judicial
decisions. This can be useful, for both lawyers and judges, as an assisting tool to rapidly
identify cases and extract patterns which lead to certain decisions. This paper presents
the first systematic study on predicting the outcome of cases tried by the European Court
of Human Rights based solely on textual content. We formulate a binary classification
task where the input of our classifiers is the textual content extracted from a case and
the target output is the actual judgment as to whether there has been a violation of an
article of the convention of human rights. Textual information is represented using
contiguous word sequences, i.e., N-grams, and topics. Our models can predict the

court’s decisions with a strong accuracy (79% on average). Our empirical analysis

indicates that the formal facts of a case are the most important predictive factor. This
is consistent with the theory of legal realism suggesting that judicial decision-making
is significantly affected by the stimulus of the facts. We also observe that the topical
content of a case is another important feature in this classification task and explore this
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Predicting judicial decisions of the ECtHR

e Predict the outcome of a case tried by the European Court of
Human Rights (ECtHR), e.g. whether an article of the
FEuropean Convention on Human Rights has been violated

e The observed data is specific parts from the proceedings of a
case as recorded by the court. In particular:

Procedure

The facts
— The circumstances of the case

— Relevant law

The law

— Alleged violation of Article X
— Parties’ submissions

—— Merits



Case structure at ECtHR

Procedure: This section contains the procedure followed before
the Court, from the lodging of the individual application until
the judgment was handed down

PROCEDURE

1. The case originated in an application (no. 35355/08) against the Republic of Bulgaria
lodged with the Court under Article 34 of the Convention for the Protection of Human Rights
and Fundamental Freedoms (“the Convention™) by a Bulgarian national, Ms Gana Petkova
Velcheva (“the applicant”), on 30 June 2008.

2. The applicant was represented by Mr M. Ekimdzhiev and Ms G. Chernicherska, lawyers
practising in Plovdiv. The Bulgarian Government (“the Government”) were represented by their
Agent, Ms Y. Stoyanova, of the Ministry of Justice.

3. The applicant alleged that the authorities had failed to comply with a final court judgment
allowing her claim for restitution of agricultural land.

4. On 7 May 2013 the application was communicated to the Government.




Case structure at ECtHR

Facts — Circumstances of the case: This section comprises all

material which is not considered as belonging to points of law,
i.e., legal arguments

THE FACTS

|. THE CIRCUMSTANCES OF THE CASE

5. The applicant was born in 1927 and lives in the village of Ribaritsa.

6. Her father, of whom she is the sole heir, owned agricultural land in the area surrounding
the village which was incorporated into an agricultural cooperative at the beginning of the
1950s.

7. In 1991, following the adoption of the Agricultural Land Act (“the ALA”, see paragraph 17
below), the applicant applied for the land’s restitution.

8. By a decision dated 10 March 1999 the land commission dealing with the case refused
to restore her rights to two plots of 900 and 2,000 square metres respectively, noting that
sheep pens had been built on them by the agricultural cooperative. It held that the applicant
was entitled to compensation in lieu of restitution.



Data and textual features

Article Human Right

3 Prohibits torture and inhuman and degrading treatment

6 Protects the right to a fair trial

8 Provides a right to respect for one’s “private and family life,

his home and his correspondence”™

Cases

250
30
254

e T7-grams

Use the 2,000 most frequent n-grams, where n = {1,..., 4}
Ditferent frequencies for different parts of the case

e Topics

— Convert the document (case)-word matrix to a word-word

matrix using cosine similarity between all pairs of word

representations (frequencies) across the documents (cases)

— Perform spectral clustering on the word-word matrix to

obtain (hard) word clusters (30)



Prediction accuracy

Feature Type

N-grams Full

Procedure

Circumstances

Relevant law

Facts

Law

Topics

Topics and circumstances

Article 3

.70 (.10)
.67 (.09)
.68 (.07)
.68 (.13)
.70 (.09)
.56 (.09)

.78 (.09)
.75 (.10)

Article 6

.82 (.11)
.81 (.13)
.82 (.14)
.78 (.08)
.80 (.14)
.68 (.15)
81 (.12)

.84 (0.11)

Article 8

.72 (.05)
71 (.06)
.77 (.08)
72 (.11)
68 (.10)
62 (.05)

.76 (.09)

.78 (0.06)

Average

.75
.73
.76
.73
.73
.62

.78
.79

n-gram features on the “Circumstances” of a case provide a

strong performance (76%)

Topics (on the “Full” proceedings) perform better (78%)

Combining the two categories of features in a linear ensemble

yields the overall best performance (79%)



Article 3 — Topic weights

(prohibits torture and inhuman and degrading treatment)

Topic Most frequent n-grams w
Positive state éinjury, protection, ordered, damage, civil, caused, 135
obligations failed, claim, course, connection T

Detention prison, detainee, visit, well, regard, cpt, access, 117
conditions food, situation, problem '
Treatment by police, officer, treatment, police officer, July, ill, 10.9
state officials force, evidence, ill treatment, arrest '
Prior violation% june, statement, three, dated, car, area, 194
of Article 2 = jurisdiction, gendarmerie, perpetrator, scene '

~ witness, asked, told, incident, brother, heard,
Issues of proof . . . . -15.2
| submission, arrived, identity, hand
Sentencing sentence, year, life, circumstance, imprisonment, 174

release, set, president, administration, sentenced
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User-g d content can assist in the early detection and prevalence
estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public
platform for transforming search queries to indications about the current state of flu in various places
all over the world. However, the original model significantly mispredicted influenza-like illness rates
in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt,
proposing substantial improvements. Firstly, we investigate the performance of a widely used

linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by
incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on
a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive
model, injecting prior knowledge about the disease. We assess predictive performance using five
consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings

of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the
lowest cumulative nowcasting error, and also suggest that query information significantly improves
autoregressive inferences, obtaining state-of-the-art performance.

User-generated content published on or submitted to online platforms has been the main source of infor-
mation in various recent research efforts'->. It has been shown that large data sets of social media posts
and search engine queries contain signals representative of real-life patterns and are therefore indicat
of social phenomena in a variety of domains, including politics', finance®, commerce’®, and health
Focusing on health-oriented applications, early research efforts have provided empirical evidence of the
and search engine logs”*>*” for predicting influenza-like illness (ILI) rates
Google Flu Trends (GFT:; http://www.google.org/flutrends) *, in particular,is the first real-time system to
apply such methods in practice over a considerable number of countries and a large time span. Similar
results were derived through the application of simple®!* or more elaborate'*'” natural language pro-
c to content published on the micro-blogging, social networking platform of Twitter.
Data driven estimates can undoubtedly complement current sentinel surveillance ems. One of the
vations for developing these methods is the intuition that web data c
and less costly information about the pre
n important distinction here is that web content can potentially acc
larger part of a disease population pyramid, whereas epidemiological derivations are usually based on
the subset of people that actively seek medical attention. Beyond this, places with less established health
monitoring systems can greatly benefit from an adaptation of this technology
Aside from the novelty that GET introduced, the statistical model behind it has not been tested exten-
sively under practical conditions. Certain works have reported on the mispredictions of GFT through
sis of its outputs that are published online!*2%, Our study proposes and compares several alter-
native approaches to the original GFT model based on original search query data. We explore three

ce

*University College London, Department of Computer Science, London, NWa 2FD, UK. *Google, Flu Trends Team,
London, SWaW gTQ, UK. *Harvard University, School of Engineering and Applied Sciences, Cambridge, MA 02138,
US. Correspondence and requests for materials should be addressed to V.L. (email: v.ampos@ud.ac.uk)
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ABSTRACT

Health surveillance systems based on online use
content often rely on the identification of textual markers
ven the high volume

nerated

that are related to a target disease. (
of available data, these systems benefit from an automatic

feature selection process. This is accomplished either by ap-
plying statistical learning techniques, which do not consider
the semantic relationship between the selected features and
the inference task, or by developing labour-intensive text
classifiers. In this paper, we use neural word embeddings
trained on social media content from Twitter, to determine

in an unsupervised manner, how strongly textual features
are semantically linked to an underlying health concept
We then refine conventional feature selection methods by
a priori operating on textual variables that are sufficiently
t concept. Our experiments focus on the su-
problem of estimating influenza-like illness

le search queries. A “flu infection” concept
is formulated and used to reduce spurious —and potentially
confounding— features that were selected by previously ap
plied approaches. In this way, we also address forms of scep-
ticism regarding the appropriateness of the feature space
alleviating potential cases of overfitting. Ultimately, the
proposed hybrid feature selection method creates a more

reliable model that, according to our empirical analysis, im-

proves the inference performance (Mean Absolute Error) of
linear and nonlinear regressors by 12% and 28.7%, respec
tively

Keywords
Computational Health; Syndromic Surveillance; Influenza
Like Illness; User-Generated Content; Search Query Logs:
Feature Selection; Word Embeddings; Regularised Re

sion; Gaussian Processes

(©2017 Intemational World Wide Web Conference Commitiee (IW3C2)
published under Commons CC BY 4.0 License.
WWW 2017, April 3-7, 2017, Perth, Australia.

NTRODUCTION

Online user-generated content (UGC), primarily in the

form of social media posts or search query logs, has been the
focus of considerable research effort in recent years. It has
facilitated methods, interpretations and inferences in various
scientific areas, such as Computational Linguistics [19, 47
Behavioural Sciences [28, 55), Computational Social Science
3, 24] and Computational Health [8, 20, 37, 56], among
many others

A common paradigm, evident in many of these works, is
the formulation of a supervised learning task based on a tex-
tual representation of UGC [10, 53]. This often involves a
la

samples, encouraging the application of statistical methods

number of features, but a moderate number of training

that are able to project the data to a lower dimensional space
or maintain the most relevant predictors [33, 34, 36, 48]. A
valid criticism of such approaches is that some of the selected
features may have little or no semantic link to the regres-
sion task, increasing the possibility of overfitting, especially
are observed. T

in situations where spurious correlatio
alleviate this effect, methods in Natural Language Process-
ing (NLP) have incorporated classification schemes or have
to encourage a re-
t the-
matic concept [2, 7, 11, 49]. However, these operations tend

routinely used lexical taxonomies, aimir

latedness between the input information and the ta

to require an extensive human effort, especially in obtaining
a sufficient number of labelled outputs, and are limited to a
specific task

In this paper, we take advantage of current developments
in statistical NLP and propose a method to address the
aforementioned deficiencies. We form general textual con
cepts by adopting neural word embeddings [44], and then
use them in conjunction with conventional feature selection

methods to encourage a level of topicality in the selected pre-

dictors within a text regression task. This approach can be
regarded as an unsupervised classification layer that favours
textual features that belong to a target theme of interest

We use this method to improve feature selection for a large
scale, practical, and well-studied text regression task, specif
ically the inference of influenza-like illness (ILI) rates from
time series of search query frequencies [20, 35, 59
Monitoring disease rates from online activity can comple-
ment the existing health surveillance infrastructure, as it

provides access to a larger part of the population including
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Inferring disease rates from (Google search
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medicine for flu symptoms
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(Google proposed an infamous method...

... Google Flu Trends, that made some major mistakes
when estimating flu rates in the US, such as

0.09 ! !
—— CDC ILI rates
0.08 - —GFT .

2009 2010 2011 2012 2013
Time (weeks)

“rsv”? — 25%

“flu symptoms” — 18%

“benzonatate” — 6%

“symptoms of pneumonia” — 6%

“upper respiratory infection” — 4%



(Google proposed an infamous method...

... Google Flu Trends, that made some major mistakes
when estimating flu rates in the US, such as

0.09 ! ! -
—— CDC ILI rates
0.08 - —GFT .

0.07 -
0 0.06 - .
a 1

@ 0.05 - ‘ .

Why did it fail?

e Applied an inadequate regression approach; too

basic, making the wrong assumptions about the data

e Did not care to model language at all

e Plus, it was not tested properly!

“benzonatate” — 6%
“symptoms of pneumonia” — 6%
“upper respiratory infection” — 4%



A better way to select search queries

1. Learn word embeddings by applying word2vec on Twitter data

2. Search query embedding = Average token embedding

3. Derive a concept by specifying a positive (P) and a negative
(N) context (sets of n-grams)

4. Rank all queries using their similarity score with this concept

query embedding

Zle cos (eg)er,;)
Sjj?_l cos (eg, eNj) v

S(9Q,C) =

embedding of a negative constant to avoid
concept n-gram division by 0



A better way to select search queries

#1lu

fever
flu

flu medicine

gpb
hospital

bieber

ebola
wikipedia

cold flu medicine
flu aches

cold and flu

cold flu symptoms

colds and flu

......................................................................................................................................................................................................................................

flu

flu gp
flu hospital

flu medicine

ebola
wikipedia

flu aches
flu

colds and flu
cold and flu

cold flu medicine



Hybrid combination with regression techniques

Embedding based feature selection (concept ranking) is an
unsupervised technique, thus non optimal

If we combine it with the previous ways for selecting features
and state-of-the-art regression approaches, will we obtain better
inference accuracy”?

We test 7 feature selection approaches:
e concept ranking (CR) — elastic net (1)
e correlation — elastic net (2) — Gaussian Process (GP) (3)
e CR — correlation — elastic net (4) — GP (5)
e . CR — correlation —» GP (6)
e correlation — GP (7)
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Abstract

Social media content can be used as a
complementary source to the traditional
methods for extracting and studying col-
lective social attributes. This study focuses
on the prediction of the occupational class
for a public user profile. Our analysis i
conducted on a new annotated corpus of
Twitter users, their respective job titles,
posted textual content and platform-related
attributes. We frame our task as classifi-
cation using latent feature representations
such as word clusters and embeddings. The
employed linear and, especially, non-linear
methods can predict a user’s occupational

is

class with strong accuracy for the coars-
est level of a standard occupation taxon-
omy which includes nine classes. Com-
bined with a qualitative assessment, the
derived results confirm the feasibility of

our approach in inferring a new user at-
tribute that can be embedded in a multitude
of downstream applications.

1 Introduction

The growth of online social networks provides the
opportunity to analyse user text in a broader context
(Tumasjan et al., 2010; Bollen et al., 2011; Lam-
pos and Crist i, 2012). This includes the social
network (Sadilek et al., 2012), spatio-temporal in-
formation (Lampos and Cristianini, 2010) and per-
sonal attributes (Al Zamal et a 012). Previous
research has analysed language differences in user
attributes like location (Cheng et al., 2010), gender
(Burger et al., 2011), impact (Lampos et al., 2014)
and age (Rao et al., 2010), showing that language
use is influenced by them. Therefore, user text al-
lows us to infer these properties. This user profiling
is important not only for sociolinguistic studies, but
also for other applications: recommender systems

n.edu, {v.lam

s,n.aletras}@ucl.

to provide targeted advertising, analysts who study
different opinions in each social class or integra-
tion in text regression tasks such as voting intention
(Lampos et al., 2013).

Social status reflected through a person’s occu-
pation is a factor which influences language use
(Bemstein, 1960; Bernstein, 2003; Labov, 2006).
Therefore, our hypothesis is that language use in
social media can be indicative of a user’s occu-
pational class. For example, executives may write
more frequently about business or financial news,
while people in manufacturing positions could re-
fer more to their personal interests and less to job
related activities. Similarly, we expect some cate-
gories of people, like those working in sales and
s, to be more social or to use more

customer serv
informal language.

Focusing on the microblogging platform of Twit-
ter, we explore our hypothesis by studying the
task of predicting a user’s occupational class given
platform-related attributes and generated content,
i.e. tweets. That has direct applicability in a broad
range of areas from sociological studies, which
analyse the behaviour of different occupations, to
recruiting companies that target people for new job
opportunities. For this study, we created a publicly
available data set of users, including their profile
information and historical text content as well as
a label to an occupational class from the “Stan-
dard Occupational Classification” taxonomy (see
Section 2).

We frame our task as classification, aiming to
identify the most likely job class for a given user
based on profile and a variety of textual features:
general word embeddings and clusters (or ‘topics’).
Both linear and non-linear classification methods
are applied with a focus on those that can assist in-
terpretation and offer qualitative insights. We find
that text features, especially word clusters, lead
to good predictive performance. Accuracy for our
best model is well above 50% for 9-way classifi-
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Predicting Twitter user occupation

“Socioeconomic variables are influencing language use.”

( ; )

e Validate this hypothesis using a larger sample of humans
(social media users)

e Applications
— research (social sciences, health etc.)
— commercial



Standard Occupation Classification (SOC)

Major Group 1 (C1): Managers, Directors and Senior Officials
Sub-major Group 11: Corporate Managers and Directors
Minor Group 111: Chief Executives and Senior Officials
Unit Group 11135: Chief Executives and Senior Officials
eJob: chief executive, bank manager
Unit Group 1116: Elected Officers and Representatives
Minor Group 112: Production Managers and Directors
Minor Group 113: Functional Managers and Directors
Minor Group 115: Financial Institution Managers and Directors
Minor Group 116: Managers and Directors in Transport and Logistics
Minor Group 117: Senior Officers in Protective Services
Minor Group 118: Health and Social Services Managers and Directors
Minor Group 119: Managers and Directors in Retail and Wholesale
Sub-major Group 12: Other Managers and Proprietors
Major Group (C2): Professional Occupations
eJob: mechanical engineer, pediatrist
Major Group (C3): Associate Professional and Technical Occupations
eJob: system administrator, dispensing optician
Major Group (C4): Administrative and Secretarial Occupations
eJob: legal clerk, company secretary
Major Group (CS5): Skilled Trades Occupations
eJob: electrical fitter, tailor
Major Group (C6): Caring, Leisure and Other Service Occupations
eJob: nursery assistant, hairdresser
Major Group (C7): Sales and Customer Service Occupations
eJob: sales assistant, telephonist
Major Group (C8): Process, Plant and Machine Operatives
eJob: factory worker, van driver
Major Group (C9): Elementary Occupations
eJob: shelf stacker, bartender

provided by the
Office for National
Statistics (UK)

9 major groups
25 sub-major groups
90 minor groups

369 unit groups



Standard Occupation Classification (SOC)

—C1:
—C2:
—C3:
—(C4:
—C5:
—(C6:
—CT:
—(C8:
—C9:

The 9 major occupational classes (C1-9)

Managers, Directors, Senior Officials (CEO, bank manager)
Protessional Occupations (postdoc, pediatrist)

Associate Professional, Technical (sysadmin, dispensing optician)
Administrative, Secretarial (legal clerk, secretary)

Skilled Trades (electrical fitter, tailor)

Caring, Leisure, Other Service (nursery assistant, hairdresser)
Sales, Customer Service (sales assistant, telephonist)

Process, Plant, Machine Operatives (factory worker, van driver)

Elementary (shelf stacker, bartender)



Twitter data

e 5,191 Twitter users mapped to their occupations,

then mapped to one of the 9 SOC categories
e 10 million tweets

% of users per SOC category

39
28
21
14

ci C2 (C3 C4 C5 ¢C6 Cr C8 (9



Twitter user features

number of

— followers
— friends

— followers/friends (ratio)

— times listed

— tweets

— favourites (likes)

— unique @-mentions
— tweets/day (avg.)

— retweets /tweet (avg.)

proportion of

— retweets done

— non duplicate tweets

— retweeted
— hashtags

tweets

— tweets with hashtags

— tweets with @Q-mentions

— @-replies

— tweets with links

— tweets 1n |

“nglish



Twitter user teatures — Topics

Topics — Word clusters (#: 30, 50, 100, 200)

e SVD on the graph laplacian of the word by word
similarity matrix using normalised PMI, 7.e. a form of
spectral clustering

e word2vec (skip-gram with negative sampling) to learn

word embeddings; pairwise cosine similarity on the
embeddings to derive a word by word similarity matrix;
then spectral clustering on the similarity matrix



Accuracy (%)

Job (9-class) classification accuracy

59

19

43

37

31

25

B Logistic Regression
[ ] Gaussian Process (SE-ARD)

- most frequent class

baseline (34.4%)

User Attributes

Topics (SVD)

B SVM (RBF)

Topics (word2vec)



Most predictive topics (word2vec)

Topic Most central words; Most frequent words
Arts archival, stencil, canvas, minimalist; art, design, print
Health chemotherapy, diagnosis, disease; risk, cancer, mental, stress

Beauty Care exfoliating, cleanser, hydrating; beauty, natural, dry, skin

Higher undergraduate, doctoral, academic, students, curriculum;
Education students, research, board, student, college, education, library
Football bardsley, etherington, gallas; van, foster, cole, winger
Corporate consortium, institutional, firm’s; patent, industry, reports

Elongated yaaayy, wooo0o0, WO000, yayyyyy, yaaaaay, yayayaya, yayy;
Words wait, till, til, yay, ahhh, hoo, woo, woot, whoop, woohoo

Politics religious, colonialism, christianity, judaism, persecution,
101 : : : : o
fascism, marxism; human, culture, justice, religion, democracy




Higher vs. lower skilled occupations and topics

Health

Beauty Care
Education
Football*
Corporate
Elongated Words

Politics

B Classes 1-2 B Classes 6-9

4.45 2.13

2.24

6.04 2.56

1.08 1.04 * times 2 for visualisation purposes

2
1N

5.15 1.41

3.78

2.14 1.06

Topic scores for occupational class supersets



Slides (with potential revisions)

lampos.net/slides/irdm2019.pdf
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