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Background and motivation

O/O

Assessing the impact of a health intervention via online content



Online, user-generated data

Social media, blogs, search engine query logs

Proxy of real-world (online+offline) behaviour

Complementary information sensors to more

Torts

‘traditional’ crowdsourcing e

Can answer questions difficult to resolve otherwise

Strong predictive power



Online, user-generated data — Applications

+ Politics
° Voting intention (Lampos, Preotiuc-Pietro & Cohn, 2013)

« result Of an election (Tumasjan et al., 2010)

+ Finance
° ﬁnancial indices (Bollen, Mao & Zeng, 2011)
- tourism patterns (Choi & Varian, 2012)

+ User profiling
o age (Rao et al., 2010)
o gen der (Burger et al., 2011)
o occupation (Preotiuc-Pietro, Lampos & Aletras, 2015)



Online, user-generated data for health

Traditional disease surveillance
- does not cover the entire population
- not present everywhere (cities [ countries)
- not always timely

Digital disease surveillance
+ different or better population coverage
+ better geographical granularity
+ useful in underdeveloped parts of the world
+ almost instant
- noisy, unstructured information

e.g. (Lampos & Cristianini, 2010 & 2012), (Lamb, Paul & Dredze, 2013), (Lampos et al., 2015)
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Estimating disease rates from online text
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Estimating disease rates from online text

time intervals N
n-grams M
frequency of n-grams during the time intervals X & RN*xM

disease rates during the time intervals 'Y © RY

Ridge regression

N M
argmin (Z (%W + 3 — y@')2 + K Z w?) (Hoerl & Kennard, 1970)

W, i=1 j=1

Elastic net

N M M
argmin (Z (3;w + B — i) 4+ A1 Z [w;| 4+ Az Z w?) (Zou & Hastie, 2005)
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Estimating disease rates from online text

Gaussian Process  f(x) ~ GP (u(x) =0, k(x,x"))

(Rasmussen & Williams, 2006)

Rational Quadratic covariance function (kernel)

lx =3

, —
kRQ(Xv X/) — 0 (1 | 2y f2 )

infinite sum of squared exponential (RBF) kernels




Estimating disease rates from online text

Gaussian Process  f(x) ~ GP (u(x) =0, k(x,x"))

(Rasmussen & Williams, 2006)

Rational Quadratic covariance function (kernel)

M2\ ¢
o s o2 (1 I =B
RQ(X, X)) =0 ( 20002

infinite sum of squared exponential (RBF) kernels

One kernel per n-gram category
varied usage patterns, increasing semantic value

k(x,x') (Z kRrRQ gn,gn)) + kn(x, x')

n=1
see also (Lampos et al., 2015)



Estimating influenza-like illness (ILI) rates — Data

User-generated data, geolocated in England

. Twitter: May 2011 to April 2014 (308 million tweets)
- Bing: end of December 2012 to April 2014

ILI rates from Public Health England (PHE)

—— LI rates (PHE)
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Estimating ILI rates — Feature extraction

Start with a manually crafted list of 36 textual
markers, e.g. flu, headache, doctor, cough

Extract frequent co-occurring n-grams from a corpus
of 30 million UK tweets (February & March, 2014)
after removing stop-words

Set of markers expanded to 205 n-grams (n < 4)
e.g. #flu, #cough, annoying cough, worst sore throat

Relatively small set of features motivated by
previous work (Culotta, 2013)



Estimating ILI rates — Experimental setup

Two time intervals based on the different temporal
coverage of Twitter and Bing data

- Dt1: 154 weeks (May 2011 to April 2014)

- Dt2: 67 weeks (December 2012 to April 2014)

Stratified 10-fold cross validation

Error metrics
- Pearson correlation (r)
- Mean Absolute Error (MAE)
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Estimating ILI rates — Performance
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MAE x 103

Estimating ILI rates — Performance

| Ridge Regression [l ElasticNet [ Gaussian Process
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Estimating the impact of a health intervention
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Estimating the impact of a health intervention

. Disease intervention launched (to a set of areas)

. Define a distinct set of control areas

. Estimate disease rates in all areas

. Identity pairs of areas with strong historical correlation

iNn their disease rates

. Use this relationship during and slightly after the

Tected areas

intervention to infer diseases rates in the a
had the intervention not taken place



Estimating the impact of a health intervention

T ={t1,...,tn} timeinterval(s) before the intervention
v location(s) where the intervention took place
c  control location(s)

disease rate(s) in disease rate(s) in

e e N

affected location ~ 7(qy,q;.) control location
before intervention l before intervention
high

N
. . N 2
f(w,p):R =R suchthat argmin > (qhw+ B —q)
W =1



Estimating the impact of a health intervention

N
. . A\ 2
f(w,f):R—R  suchthat argmin > (diw+B—4q)
w, 1

estimate projected rate(s) in affected x b
. . . . —¥ qfu — W _|_
location during/after intervention




Estimating the impact of a health intervention

N
f(w,f):R =R suchthat argmin (¢fw+ 8 —qk)’

estimate projected rate(s) in a
location during/after intervention

quv —»
absolute difference
52} — qU I q;';

(Lambert & Pregibon, 2008)

disease rate(s) in a
during/after intervention

w,d =1

ected N q;'j — quw +b

ected location

relative difference (impact)




v' Background and motivation

v’ Estimating disease rates from online text

v Estimating the impact of a health intervention
® Case study: influenza vaccination impact

® Conclusions & future work
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Live Attenuated Influenza Vaccine (LAIV) campaign

. LAIV programme for children (4 to 11 years) in pilot
areas of England during the 2013/14 flu season

- Vaccination period (): Sept. 2013 to Jan. 2014
- Post-vaccination period (green): Feb. to April 2014

—e— PHE/RCGP I LAIV Post LAIV
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Target (vaccinated) & control areas
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Applying the impact estimation framework

Target vs. control areas
- Use previous flu season only to establish relationships
- Find the best correlated areas or supersets of them

Confidence intervals

- Bootstrap sampling of the regression residuals
(mapping function of control to vaccinated areas)

- Bootstrap sampling of data prior to the application of
the bootstrapped regressor

» 10° bootstraps; use the .025 and .975 quantiles

Statistical significance assessment
- Impact estimate (abs.) > 20 of the bootstrap estimates



Relationship between vaccinated & control areas

* pre-vaccination period
X during/after LAIV
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Relationship between vaccinated & control areas
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X during/after LAIV
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Impact estimation results (strongly correlated controls)

Twitter | All areas  .861 -2.5(-4.1,-1.0) -32.8 (-47.4, -15.6)

Bing |Allareas .866 -1.9(-3.2,-0.7) -21.7(-32.1,-9.10)

London

Twitter reac .738 -1.7 (-2.5,-0.9)|-30.5 (-41.8, -17.5)
. London
Bing reas .848 -2.8(-4.1,-1.6) -28.4 (-36.7, -17.9)
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Impact estimation results (strongly correlated controls)

Twitter

London
areas

.738

1.7 (-2.5, -0.9)

-30.5 (-41.8, -17.5)

Bing

London
areas

848

-2.8 (-4.1, 1.6)

-28.4 (-36.7, -17.9)




35

28 |

21 |

0 (%)

14 |

Impact estimation results (stat. sig.)

= Twitter

. Bing

All areas London areas Newham

30.5 30‘4 I

Cumbria

Gateshead




Projected vs. inferred ILI rates in vaccinated locations
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Projected vs. inferred ILI rates in vaccinated locations
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Sensitivity of impact estimates to variable controls

- Repeat the impact estimation for the N controls (up to
a 100) with r > 95% of the best r—> (&) and w(0) (%)

- Measure % of difference, A(0), between 0 and u(06)

Twitter | All areas 100 | 0.84 | -2.5(0.2) | -32.7(2.1) | 0.10

Bing | Allareas | 46 0.85 -1.4(0.4) -16.4(3.6) 24.4

] London

Twitter reas 79 | 0.70 -1.5(0.1) | -27.9(2.0) @ 8.32
] London

Bing 100 0.84|-1.4(0.2)  -16.9(1.8) | 40.4




Sensitivity of impact estimates to variable controls

- Repeat the impact estimation for the N controls (up to
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Sensitivity of impact estimates to variable controls
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Conclusions & points for discussion

- Framework for estimating the impact of a health
intervention based on online content

» Access to di

Terent & larger parts of the population

Evaluation is hard, however:
- PHE’s impact estimates: -66% based on sentinel

surveillance,

-24% laboratory confirmed  (Pebodyetal, 2014)

» Correlation between actual vaccination uptake and our
study’s estimated impacts

Why are Bing and Twitter estimations different?
- Different user demographics (?) — this can be useful
- Different temporal resolution




Potential future work directions

- Improve supervised learning models
- better natural language processing [ machine
learning modelling
- combination of different data sources

- Work on unsupervised techniques
- inferring [ understanding the demographics of the
online medium will be essential

» More rigorous evaluation
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