Extracting interesting concepts
from large-scale textual data
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Minimising the usual introduction

+ the Internet ‘revolution’

+ successful web products feeding from user activity
(search engines, social networks)

+ large volumes of digitised data (‘Big Data’)

+ lots of user-generated text & activity logs
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+ the Internet ‘revolution’

+ successful web products feeding from user activity
(search engines, social networks)

+ large volumes of digitised data (‘Big Data’)

+ lots of user-generated text & activity logs

Can we arrive to better understandings of our
‘world’ from this data?
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Word taxonomies for emotion

WordNet Affect

+ builds on WordNet — automated word selection
+ anger, disgust, fear, joy, sadness, surprise

(Strapparava & Valitutti, 2004)

Linguistic Inquiry and Word Count (LIWC)

+ taxonomies have been evaluated by human judges
+ affect, anger, anxiety, sadness, negative or positive emotions

(Pennebaker et al., 2007)



Applying emotion taxonomies
on Google Books
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Left: Joy minus Sadness — WWII, Baby Boom, Great Depression
Right: Emotional expression in English books decreases over the years

(Acerbi, Lampos, Garnett & Bentley, 2013)




EM = Inflation + Unemployment
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(Bentley, Acerbi, Ormerod & Lampos, 2014)




...and now let’s apply keyword
based sentiment extraction
tools on Twitter content
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/\%Day Time Series for Joy in Twitter Content

K'X\M/:s/') ) I_ I(*IXMAS ) | \ patterns (UK)
. :avzé(;{/ ?r?]rilthed joy -

Top:
* valentine * valentine o . .
* easter ‘]Oy, tlme Serles

across 3 years

Normalised Emotional Valence

Bottom:

rate of mood change
Foar | for ‘anger’ and

|- - Datc ot Rt il ‘ ‘fear’ (50-day
window); peaks

indicate increase in

—»— Anger

mood change

Difference in mean

(Lansdall-Welfare,
Lampos & Cristianini,
2012)




Overview

A. Prefixed keyword-based mining
B. Automating feature selection

C. User-centric (bilinear) modelling
D. Inferring user characteristics

BTV

Extracting interesting concepts from large-scale textual data




The case of influenza-like illness (ILI)

+ existence of ‘ground truth’ enables optimisation of keyword selection
+ supervised learning task (f: X —> y)



The case of influenza-like illness (ILI)
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+ complementary disease indicator
+ earlier-warning

+ applicable to parts of the world with |
. . .
less comprehensive healthcare systems B e ey 0

+ noisy, biased demographics, media bias

(Lampos & Cristianini, 2010 and
Lampos, De Bie & Cristianini, 2010)



The case of influenza-like illness (ILI)

Twitter data
+ 27 million tweets from 54 UK urban centres
+ June 22 to December 6, 2009

Health surveillance data

+ ILI rates expressing GP consultations per 100,000 people,
where the diagnosis was IL|

Feature extraction

+ a few handcrafted terms, and

+ all unigrams from related websites (Wikipedia, NHS, etc.)
+ =1560 stemmed unigrams (most of which unrelated)

(Lampos & Cristianini, 2010 and
Lampos, De Bie & Cristianini, 2010)



Regularised text regression

observations x; € R™, ic{l,..,n}
responses y; € R, ic{l,...,n}
weights, bias  w;, 8 € R, je{l,...,m}

argmin { || X.aw, — y|, +Awl,

W «

broadly known as the ‘lasso’ (Tibshirani, 1996)



Flu rate / score (z—scores)

—*— Twitter’s Flu—-score (region D) }7
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41 handcrafted markers
blood, cold, cough, dizzy, feel sick,
feeling unwell, fever, flu, headache,

runny nose, shivers, sore throat,
stomach ache (...)
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Automatically selected unigrams
lung, unwel, temperatur, like, headach,
sedson, unusu, chronic, child, dai, appetit,
stai, symptom, spread, diarrhoea, start,
muscl, weaken, immun, feel, liver (...)

Manual vs. automated feature selection

(Lampos & Cristianini, 2010)




Robustitying the previous algorithm

Lasso may not select the true model due to collinearities in the feature space
(Zhao & Yu, 2006)

Bootstrap lasso (‘bolasso’) for feature selection  (Bach, 2008)

+ For a number (N) of bootstraps, i.e. iterations
+ Sample the feature space with replacement (X;)
+ Learn a new model (w;) by applying lasso on Xiand y
+ Remember the n-grams with nonzero weights

+ Select the n-grams with nonzero weights in p% of the N bootstraps

+ p can be optimised using a held-out validation set

(Lampos, De Bie & Cristianini, 2010 and
Lampos & Cristianini, 2012)



Robustitying the previous algorithm

Lasso may not select the true model due to collinearities in the feature space
(Zhao & Yu, 2006)

Bootstrap lasso (‘bolasso’) for feature selection  (Bach, 2008)

+ For a number (N) of bootstraps, i.e. iterations
+ Sample the feature space with replacement (X;)
+ Learn a new model (w;) by applying lasso on Xiand y
+ Remember the n-grams with nonzero weights

+ Select the n-grams with nonzero weights in p% of the N bootstraps

+ p can be optimised using a held-out validation set

— Will all this generalise to a different case study?

(Lampos, De Bie & Cristianini, 2010 and
Lampos & Cristianini, 2012)



Word cloud — Selected n-grams for ILI
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So, apart from flu,
we also tried to nowcast
rainfall rates.



Word cloud — Selected n-grams for rain
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User-centric modelling : why?

+ text regression models usually focus on the
word space

+ social media context —> words, but also users

+ models may benefit by incorporating a form of
user contribution in the current word modelling

+ in this way more relevant users contribute more,
and irrelevant users may be filtered out

(Lampos, Preotiuc-Pietro & Cohn, 2013)



‘bilinear’ modelling : definition

Linear regression | (i) = g;;.f w+ [

observations x; € R™,
responses y; € R,
weights, bias  w;, 5 € R,

Bilinear regression

users
observations
responses

weights, bias




‘bilinear’ modelling : definition

users
observations
responses

weights, bias




Bilinear regularised regression

users
observations - i c{1,...,n}
responses : ie€ql,...,n}

weights, bias ' ke{l,..,p}
je{l,..,m}

argmin {Z (uTin + 8 — yi)z + Y(u, 0,) + Y (w, Hw)}

uawaﬁ 1=1

Y (-): regularisation function with a set of hyper-parameters (6)
o if Y (v,\) = A||lv]lg Bilinear Lasso
o if ¥ (v,A1,X2) = \|[v]|7, + A2lv]le, Bilinear Elastic Net (BEN)

(Lampos, Preotiuc-Pietro & Cohn, 2013)




An extension: bilinear & multi-task

+ optimise (learn the model parameters for) a
number of tasks jointly

+ attempt to improve generalisation by exploiting
domain specific information of related tasks

+ good choice for under-sampled distributions
(knowledge transfer)

+ application-driven reasons (e.g. voting intention
modelling)

(Caruana, 1997; Lampos, Preotiuc-Pietro & Cohn, 2013)



Bilinear multi-task text regression

e tasks TEZLT

® users pEZT
e observations @Q; € RP*™ e {1,..,n}
responses Y, € R, iec{l,...,n}
weights, bias  ug,w;,B € R", ke {1,...,p}
jeA{l,...,m}

f(@Qi)=tr (UTQW) +8




Bilinear Group ¢, (BGL)

e tasks TEZLT

® users pEZT

e observations @Q; € RP*™ e {1,..,n}

® responses Y, € R, iec{l,...,n}

e weights, bias wui,w;,B €R", ke {1,..,p}
jeA{l,...,m}

argImin { Z ( F Qiwy + By — yti)2
t=

UWw.,p 1i=1

+ Ay Z \Ukll2 + A Z W ]2

(Argyriou et al., 2008) }
1=1




BGL’s main property

' 7;‘( FQiw; + B — yti)2

t=11=1

D m
+ A D U2 4+ A Y \Wj\|2}

k=1 j=1

W e -

U' Q; |14

+ a feature (user or word) is usually selected (activated) for
all tasks, but with different weights
+ useful in the domain of political preference inference




Inferring voting
intention via Twitter
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Performance figures — BGL prevails

@ Mean poll

Last poll M Elastic Net (words) B BEN B BGL

3.1

2.48 T

1.86 |
1.723
1.24

0.62 |

Root Mean Squared Error

1.47

Austria



BGL-scored tweet examples (Austria)

Party Tweet Score|User type
Inflation rate in Austria slightly down in July
SPO | from 2.2 to 2.1%. Accommodation, Water, | 0.745 |Journalist
Energy more expensive.
Can really recommend the book “Res Publica”
OVP | by Johannes #Voggenhuber! Food for thought |-2.323|  User
and so on #Europe #Democracy
Campaign of the Viennese SPO on “Living Human
FPO | together” plays right into the hands of right- | -3.44 ot
wing populists &
Protest songs against the closing-down of the
CRU bachelor course of International 1 Student
Development: <link> #ID remains #UniBurns 451 Union

#UniRage




Overview

A. Prefixed keyword-based mining
B. Automating feature selection

C. User-centric (bilinear) modelling
D. Inferring user characteristics

el oon

Extracting interesting concepts from large-scale textual data




Predicting user impact on Twitter

+ Validate a hypothesis: “User behaviour on a social
platform reflects on user impact”

+ What parts of user behaviour are more relevant to
a notion of user impact?

+ In this regard, how informative are the text inputs
from the users?

(Lampos, Aletras, Preotiuc-Pietro & Cohn, 2014)



Defining an impact score (S)
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http://www.twitter.com/lampos
http://www.twitter.com/nikaletras

Impact prediction as a regression task

| Ridge Regression I Gaussian Process
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Attributes Attributes & Words Attributes & Topics
Feature type

(Lampos, Aletras, Preotiuc-Pietro & Cohn, 2014)




mean
impact score

for ALL users 1

(Lampos, Aletras,
Preotiuc-Pietro &
Cohn, 2014)
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We can guess the impact

of user from user activity,

but can we infer his |/ her
occupation?



Inferring the occupational class of a Twitter user

“Socioeconomic variables are influencing language use.”

(Bernstein, 1960; Labov, 1972/2006)

+ Validate this hypothesis on a larger data set

+ Downstream applications
+ research (social science & other domains)
+ commercial

+ Proxy fori
further ap

ncome, socioeconomic class etc., i.e.

plications

(Preotiuc-Pietro, Lampos & Aletras, 2015)



Standard Occupational Classification (SOC, 2010)

C1 Managers, Directors & Senior Officials — chief executive, bank manager

C2 Professional Occupations — mechanical engineer, pediatrist, postdoc (!)

C3 Associate Professional & Technical — system administrator, dispensing optician
C4 Administrative & Secretarial — legal clerk, company secretary

C5 Skilled Trades — electrical fitter, tailor

C6 Caring, Leisure, Other Service — nursery assistant, hairdresser

C7 Sales & Customer Service — sales assistant, telephonist

C8 Process, Plant and Machine Operatives — factory worker, van driver

C9 Elementary — shelf stacker, bartender

Google “ONS” AND “SOC” for more information



Data

+ 5,191 users mapped to their occupations, then mapped to one of the 9
SOC categories — manual (!) labelling

+ 10 million tweets
+ Get processed data: http://www.sas.upenn.edu/~danielpr/jobs.tar.gz

% of users per SOC category

40

30

20

10

1 C2 C3 C4 C5 C6 C7 C8 C9


http://www.sas.upenn.edu/~danielpr/jobs.tar.gz

Features

User attributes (18)

+ number of followers, friends, listings, follower/friend ratio,
favourites, tweets, retweets, hashtags, @-mentions, (@-replies, links
and so on

Topics — Word clusters (200)

+ SVD on the graph laplacian of the word x word similarity matrix

using normalised PMI, i.e. a form of spectral clustering
(Bouma, 2009; von Luxburg, 2007)

+ Skip-gram model with negative sampling to learn word embeddings

(Word2Vec); pairwise cosine similarity on the embeddings to derive

a word x word similarity matrix; then spectral clustering on the
(Mikolov et al., 2013)



Occupational class (9-way) classification

| Logistic Regression [ SYM (RBF) [ Gaussian Process
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Feature type



Topics

Manual label Most central words; Most frequent words Rank
Arts archival, stencil, canvas, minimalist; art, design, print 1
Health chemotherapy, diagnosis, disease; risk, cancer, mental, stress | 2
Beauty Care exfoliating, cleanser, hydrating; beauty, natural, dry, skin 3
Higher undergraduate, doctoral, academic, students, curriculum;
Education |students, research, board, student, college, education, library 4
Software integrated, data, implementation, integration, enterprise;
Engineering service, data, system, services, access, security >
Football bardsley, etherington, gallas; van, foster, cole, winger 7
Corporate consortium, institutional, firm’s; patent, industry, reports 8
Cooking parmesan, curried, marinated, zucchini; recipe, meat, salad 9
Elongated | yaaayy, wo0000, w0000, yayyyyy, yaaaaay, yayayaya, yayy; -
Words wait, till, til, yay, ahhh, hoo, woo, woot, whoop, woohoo
Politics religious, colonialism, christianity, judaism, persecution, 6

fascism, marxism; human, culture, justice, religion, democracy




User probability
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Left: Distance (Jensen-Shannon divergence) between topic distributions for
the different occupational classes, depicted on a heatmap

Right: Comparison of mean topic usage between supersets of occupational
classes (1-2 vs. 6-9)
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Conclusions

Publicly available, user-generated content can be used to
better understand:

+ collective emotion

+ disease rates or the magnitude of some target events
+ voting intentions

+ user attributes (impact, occupation)

A number of studies (too many to cite) have attempted
different — sometimes improved — approaches on the
methods presented here.

Many studies have also explored different data mining
scenarios (e.g. infer user gender, financial indices etc.).



Some of the challenges ahead

Work closer with domain experts (social scientists to
epidemiologists)
® e.g. in collaboration with Public Health England we proposed
a method for assessing the impact of a health intervention
through social media and search query data
(Lampos, Yom-Tov, Pebody & Cox, 2015)

Understand better the biases of the online media (whenit is
desirable to conduct more generic conclusions)
® note that sometimes these biases may be a good thing

Attack more interesting (usually more complex) questions
® e.g. generalise the inference of offline from online behaviour

Improve on existing methods



Collaborators participating in the work presented today

(in alphabetical order)

Alberto Acerbi Anthropology, Eindhoven University of Technology
Nikolaos Aletras Natural Language Processing, University College London
Alex Bentley Anthropology & Archaeology, University of Bristol
Trevor Cohn Natural Language Processing, University of Melbourne
Nello Cristianini Artificial Intelligence, University of Bristol
Tijl De Bie Computational Pattern Analysis, University of Bristol
Philip Garnett Complex Systems, University of York
Thomas Lansdall-Welfare Computer Science, University of Bristol
Paul Ormerod Decision Making and Uncertainty, University College London

Daniel Preotiuc-Pietro Natural Language Processing, University of Pennsylvania



Extracting interesting concepts
from large-scale textual data

Thank you!

slides available at
http://www.lampos.net/sites/default/files/slides/ACA2015.pdf



http://www.lampos.net/sites/default/files/slides/ACA2015.pdf

Bonus slides

100%
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Training Bilinear Elastic Net (BEN)

BEN’s objective function > n 2
argmin{ Z (uTin + 5 — yz)
Biconvex problem uw,B ;=1
fix u, learn w and vice versa + Ay [[ull7, + Aus [l e

iterate through convex optimisation tasks

Large-scale solvers available

FISTA implemented in SPAMS library

(Beck & Teboulle, 2009; Mairal et al., 2010) T T
e ... —»— Global Objective
) ) ) ) ) ) ‘ ‘ RMSE

+ Ay [w][7, + A, H’wél}

Global objective function
during training (red)

Corresponding prediction
error on held out data (/1)

8 10 12 14 16 18 20 22 24 26 28 30

Step




Bilinear modelling of EU unemployment via news summaries

| marketnews.com
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More information about Gaussian Processes

+ non-linear, kernelised, non-parametric, modular
+ applicable in both regression and classification scenarios
+ interpretable

Pointers

+ Book — “Gaussian Processes for Machine Learning”
http://www.gaussianprocess.org/gpml/

+ Tutorial — “Gaussian Processes for Natural Language Processing’”
http://people.eng.unimelb.edu.au/tcohn/tutorial.html

+ Video-lecture — “Gaussian Process Basics’
http://videolectures.net/gpipo6 _mackay gpb/

+ Software | — GPML for Octave or MATLAB

http://www.gaussianprocess.org/gpml/code

+ Software Il — GPy for Python
http://sheffieldml.github.io/GPy/

(Rasmussen & Williams, 2006)


http://www.gaussianprocess.org/gpml/
http://people.eng.unimelb.edu.au/tcohn/tutorial.html
http://videolectures.net/gpip06_mackay_gpb/
http://www.gaussianprocess.org/gpml/code
http://sheffieldml.github.io/GPy/

Occupational class (9-way) classification confusion matrix
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