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Estimating the household secondary
attack rate and serial interval of COVID-19
using social media
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Aarzoo Dhiman1,2 , Elad Yom-Tov 3,4, Lorenzo Pellis5, Michael Edelstein6, Richard Pebody7,
Andrew Hayward8, Thomas House 5, Thomas Finnie 7, David Guzman1, Vasileios Lampos 1 , Virus
Watch Consortium* & Ingemar J. Cox 1,9

We propose a method to estimate the household secondary attack rate (hSAR) of COVID-19 in the
United Kingdom based on activity on the social media platform X, formerly known as Twitter.
Conventional methods of hSAR estimation are resource intensive, requiring regular contact tracing of
COVID-19 cases. Our proposed framework provides a complementary method that does not rely on
conventional contact tracing or laboratory involvement, including the collection, processing, and
analysis of biological samples. We use a text classifier to identify reports of people tweeting about
themselves and/ormembers of their household havingCOVID-19 infections. Aprobabilistic analysis is
then performed to estimate the hSAR based on the number of self or household, and self and
household tweets of COVID-19 infection. The analysis includes adjustments for a reluctance of Twitter
users to tweet about household members, and the possibility that the secondary infection was not
acquiredwithin the household. Experimental results for theUK, bothmonthly andweekly, are reported
for the period from January 2020 to February 2022. Our results agree with previously reported hSAR
estimates, varyingwith theprimary variants of concern, e.g. delta andomicron. The serial interval (SI) is
based on the time between the two tweets that indicate a primary and secondary infection.
Experimental results, though larger than the consensus, are qualitatively similar. The estimation of
hSARandSI using socialmediadata constitutes anew tool thatmayhelp in characterizing, forecasting
and managing outbreaks and pandemics in a faster, affordable, and more efficient manner.

The household secondary attack rate (hSAR) of a disease measures its
potential for spread in the context of repeated close contacts as seen in
households, in contrast to measures of overall infectiousness such as the
basic reproduction number R0. The hSAR can be defined in different ways,
but here we use the common definition as the probability of a household
member acquiring the disease within an incubation period given another
household member is infected. The investigation of hSAR, in addition to
reproduction rate, is important to understanding the risk of transmission1,
and also to inform interventions such as the decision to vaccinate close
contacts of immunocompromised individuals2. The household SAR is

affected by a number of parameters including the disease (e.g. its repro-
duction number, incubation period, variants of concern)3, the number of
household members4, the size of the dwelling, contact environment5, pre-
ventive measures of household members (e.g. vaccination, masks, social
distancing)6, comorbidities of the contacts7, anddemographic features of the
population such as age structure, sex ratio, and ethnicity8. Accurately esti-
mating the SAR of a disease is difficult. The conventional epidemiological
methodology requires a repeated cycle of case investigation and contact
tracing9 for a sample population. Infection is usually determined through
laboratory-confirmed and self-reported cases.
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The value of digital footprints, i.e. data people knowingly or
unknowingly generate when using electronic services, to infer information
about thehealth of populations or individuals is nowwell established.This is
the basis for digital epidemiology, i.e. epidemiology that uses data generated
outside the public health system and not primarily generated for health
purposes. There are a wide variety of digital footprints including social
media posts, microblogging (X, formerly known as Twitter (For reasons of
clarity,we refer toXasTwitter for the remainderof this paper.)),Web search
data, andover-the-counter (OTC) salesofmedicines. Theuse of digital trails
for syndromic surveillance dates back to at least 1977 whenWelliver et al.10

demonstrated a strong correlation between sales of OTC remedies and
influenza-like illness rates. Interest in syndromic surveillance increased in
the early 2000’s with the US Defence Advanced Research Projects Agency
initiative called ENCOMPASS (ENhanced COnsequence Management
PlanningAnd Support System) to improve earlywarning systems to protect
against bioterrorism. Contemporaneously, a number of papers demon-
strated the utility of Web search data for estimating influenza
prevalence11–14. Subsequently, various researchers showed that Twitter data
could also be used for the same purpose15–18. The use of digital trails has not
been limited to disease prevalence. Other research has shown its utility for a
variety of tasks including identifying adverse drug reactions19,20, auto-
matically identifying individuals at higher riskof health events21, performing
disease diagnosis22,23, health behaviour analysis e.g., addictions24, andmental
health prediction25.

The use of Twitter data to infer the hSAR and serial interval (SI) of
influenza was described in26. At the risk of over-simplifying, the funda-
mental idea is to identify tweets indicating that a user and/or a household
member have influenza. When users tweet first about both themselves and
then about a household member having influenza, or vice versa, within a
predetermine interval, it is assumed that this is an instance of household
secondary infection. The hSAR is then estimated as the ratio of the number
of such pairs to the total number of users tweeting that they or a household
member has influenza. The SI is determined by the time between the two
tweets that indicate a primary and secondary infection. Our work sig-
nificantly extends this approach through demonstrating its utility to
COVID-19, and extending the analytical framework. We created a labelled
set of tweets indicatingwhether a tweet was about a user havingCOVID-19,
a household member having COVID-19, or simply about a household
member. This data was then used to train three corresponding classifiers. A
probabilistic approach is then used to estimate hSAR for each month or
week. Monthly and weekly hSAR for COVID-19 are estimated for the UK
using Twitter data from January 2020 to February 2022. Not all secondary
infections originate fromwithin the household, and, as the prevalence of an
infectious disease increases, the probability of acquiring the disease from
outside of the household increases. We therefore introduce an adjustment
factor to partially correct for secondary infections originating from outside
of the household. It has been previously noted26 that Twitter usersmay have
varying reluctance to tweet about a householdmember. This reluctance can
lead to under-reporting of household infection and consequently lower our
hSAR estimates. We confirmed that this reluctance exists and adjusted for
variations in the likelihood of tweeting about a household member. A fur-
ther contribution is an analysis of the sensitivity to variations in the size of
the monthly cohort, and providing weekly as well as monthly hSAR
estimates.

Ourmethodology assumes all households are of size two, based on the
UKaverage of 2.3, and that aTwitter user is only infectedonce.The rationale
and consequences of these assumptions are described in the Discussion.

Results
Twitter cohort classification
We first identified a seed group of 1,226,509 Twitter users that issued
experiential tweets that included statements of the form “I have
COVID” or “My spouse has COVID”. We then performed geo-
filtering, described in Section 4.1 to only include users based in the
UK, resulting in 77,016 users.

Three classifierswere trained to independently identifywhether a tweet
was (i) about the user/Tweeter having COVID-19, (ii) about a household
memberhavingCOVID-19, or (iii) about ahouseholdmember (irrespective
of topic), see Supplementary material (Supplementary Methods S 5) for
details. The classifiers, denotedC1,C2, andC3, respectively, were trainedon
a labelled set of 7894 tweets and achieved AUC scores of 0.907, 0.934, and
0.768, respectively.TheF1 scores for the three classifierswere0.8538, 0.8733,
and 0.7202 respectively. We denote the probability of tweeting about a
householdmember as ph. The ph for each user is estimated as the number of
tweets classified as positive by C3, i.e. a tweet about a household member,
irrespective of topic, divided by the total number of tweets downloaded for
this user.We removed userswhonever tweeted about a householdmember,
i.e. none of a user’s tweets was positively classified by C3, reducing the total
number of users (cohort size) to n = 58, 555. We report results for ph > 0
unless otherwise stated. Themost recent (up to) 3200Tweets of these 58,555
users were downloaded. This resulted in 107,921,029 tweets.

For each monthly or weekly period, we then identified the subset of
users with one or more tweets originating in this time interval and being
positively classified by C1 and/or C2, i.e. who tweeted that they and/or a
household member had COVID-19. Figure 1 depicts the monthly and
weekly cohort size for the period from January 2020 to February 2022,
inclusive.

Household secondary attack rate estimation
Based on this cohort, Fig. 1 also shows the inferred monthly and weekly
hSAR estimates (hSARbr), where it is assumed that household secondary
infection occurs within 14 days of the primary infection. This period is the
assumed maximum serial interval. Experiments with a longer assumed
serial interval produced very similar results. The timeof onset of theprimary
and secondary infections is assumed to be the dates of the corresponding
tweets. UKHSA estimates for hSAR for the period from January 2021 to
February 2022 are also reported for comparison purposes. Note that
UKHSA did not report hSAR estimates prior to January 2021. See Sup-
plementary Methods S 3 for further details.

Sensitivity analysis
Figure 2 examines the sensitivity of the hSARbr estimates to the cohort size.
We note that for the period from January 2020 to February 2022 the three
smallest monthly cohort sizes were 48 (January 2020), 173 (February 2020),
and 947 (August 2020). The average (median) monthly cohort size was
3143.19 (2497).

Adjustment for infection outside of the household
Our estimate, hSARbr, incorporates two adjustments. The first adjustment
attempts to account for the probability that the source of the secondary
infection was outside of the household. This is of particular concern as our
cohort size is determined by the number of index cases tweeting about
COVID-19. As such, it is strongly related to the community incidence of
COVID-19. When the community incidence is high it is more likely that a
second case in the household will in fact have been acquired outside the
household, leading to higher levels of estimated hSAR when the cohort size
is large. The correlation between our hSAR estimates, denoted as hSARbr,
and the corresponding monthly and weekly cohort sizes are 0.504
(p = 0.0085) and 0.389 (p = 2.01e–05), respectively. For comparison,
UKHSA SAR estimates have a correlation of 0.5304 (p = 0.0509) with their
corresponding cohort sizes. Figure 3A illustrates the secondary attack rate,
hSARb, before the removal of the probability of non-household secondary
infection, the latter probability denoted as rSAR. Without this adjustment,
the correlation between the estimated secondary attack rate, hSARb, and the
corresponding cohort size is significantly stronger at 0.7220.

Adjustment for reluctance to tweet about household members
The second adjustment attempts to correct for people’s reluctance to
tweet about a household member. Previous work26 has noted that the
probability of tweeting about a household member having influenza-
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like illness (ILI) after tweeting that the Twitter user had ILI, is likely
to be less than the converse, i.e. the probability of tweeting that the
Twitter user has ILI after tweeting that a household member is
infected. The former probability is expected to be less due to the
reluctance to tweet about a household member. To examine this we
computed the hSAR independently for the two groups, as depicted in
Fig. 3B. The two curves, denoted α1 and α2, represent the hSAR
estimates from (1) the users that first tweeted about being infected
and then tweeted about a household member being infected, and (2)
users that first tweeted about household members being infected and
then tweeted about themselves being infected. If there was no
reluctance to tweet about household members, we would expect the
two curves to be very similar. Instead α1 is consistently less than α2,
indicating that household infections are being under-reported. Figure
3A depicts the hSAR estimates before and after adjustment i.e. hSAR
and hSARb. A plot of α1 against α2 (see Supplementary Fig. 1 of the
supplementary material) gives a best fit line with gradient 0.56
indicating that household infection is under-reported by about 44%.

Serial interval estimation
Finally, Fig. 4 depicts thedistributionof the serial (time) interval between the
primary and secondary reports of household infection, aggregated over the
entire period from Jan 2020 to Feb 2022 and the periods where the Alpha,
Delta, and Omicron variants were dominant. The mean (median) serial
intervals are 6.49 (6), 6.67 (6), 6.61 (6), and 6.10 (5), respectively.

Discussion
Figure 1 shows the monthly/weekly cohort size gradually increasing over
time, with a significant jump in November and December of 2021. This
increase might be partially attributable to an increase in willingness to
publicly reveal/discusspersonal andhouseholdCOVID-19 status.However,
we hypothesise that the increase is primarily driven by increases in the
incidence of COVID-19 during this period. Based on UK government
statistics27, thenumber of reported cases on2ndNovember2021was 31,328,
on 1st December 2021 it was 47,263, and on 1st January 2022 it was 99,304.

As expected, Fig. 2 shows that estimates of hSARbr become noisier as
cohort size decreases. However, for cohort sizes greater than 1000, and

Fig. 1 | Monthly/weekly household secondary attack rates with key events for the
period from January 2020 to February 2022.Monthly and weekly cohort sizes and
household SAR (hSARbr) marked with key events for the period from January 2020
to February 2022, inclusive, for users with ph > 0 and an assumed maximum serial

interval of 14 days. The UK Health Security Agency (UKHSA) (formerly Public
Health England) SAR scores are the weighted average of SAR scores for different
variants published by UKHSA.
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certainly 2000, the variation in estimates is small. The monthly (weekly)
cohort size is primarily determined by two factors, namely, the incidence of
COVID-19 in the general population, and the threshold ph, i.e. the prob-
ability of tweeting about a household member. The later factor is under our
control. However themonthly cohort size decreases rapidly with increasing
threshold, as discussed in SupplementaryMethods S 2of the Supplementary
material. For example, when ph ≥ 0.05 the total cohort sizes drops from
58,555 to only 8,244.

While “recruitment” of the Twitter cohort is straightforward,
cohort size is also determined by the number of index cases tweeting
about COVID-19, and thus is strongly related to the community
incidence of COVID-19. As noted earlier, when the community
incidence is high it is more likely that a second case in the household

may have been acquired outside the household. This would have the
effect of increasing the estimated hSAR when the cohort size is large.
This is observed in Fig. 3A where the curve of hSARb (no adjustment
for probability that source of the secondary infection was outside the
household) has a strong correlation (0.7220) with the size of the
cohort. We adjust for this by estimating the probability that the
source of the second infection was from outside of the household.
This is accomplished by randomly pairing Twitter users, assuming
homogeneous mixing, considering one as the index and the other as
the secondary, and calculating the probability, denoted rSAR, that a
random pair will be infected within a 14-day interval. Further details
are provided in Section 4.2. As expected, rSAR generally increases
with the size of the cohort. After applying this adjustment, the

A B

C D

Fig. 2 | Comparison of hSARbr across for various cohort sizes. The solid line
depicts hSARbr values calculated using all the users in our Twitter cohort. The dotted
values show hSARbr for fixed cohort sizes of A. 100, B. 1000, C. 2000 D.4000 users.

For a given cohort size, we create 50 cohorts, uniformly sampled from the available
data, total cohort size permitting.

Fig. 3 | Adjustments to the household secondary attack rate estimates. A hSAR
depicts the monthly household SAR assuming no reluctance to tweet about a
householdmember. hSARb depicts the household SAR adjusted for reluctance. rSAR
is an estimate of second infections from outside of the household. Our final estimate
of household SAR is hSARbr = hSARb− rSAR. B The monthly values for α1 (the

hSAR estimate calculated from the subset of users who tweeted about being infected
and subsequently tweeted that a household member was infected) and α2 (the
estimate calculated from the subset of users who tweeted about a householdmember
being infected and subsequently tweeted that theywere infected) for userswith ph > 0
assuming a maximum serial interval of 14 days.
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hSARbr estimates have a correlation of 0.504 which is similar to the
correlation (0.5304) of UKHSA hSAR estimates and the sizes of their
corresponding monthly cohorts.

The average hSARbr value of the period from January 2020 to February
2022 is 0.1598 (CI, 0.1412 to 0.1784). While our hSARbr estimates are
usually higher than those of UKHSA, our average is very close to the hSAR
estimate of 0.166 (CI 0.140, 0.193) (throughout confidence intervals are
95%) of 28 based on a meta analysis of 54 relevant studies published until
October 2020. A follow-up meta analysis based on 87 studies, published
between October 2020 and June 2021, reported an overall SAR of 0.189 (CI
0.162, 0.220)29. A further meta-analysis of 63 studies from January 2020 to
January 2022withmidpoints throughApril 2020 reported SARof 0.155 (CI
0.132-0.182)30. A review of studies in the early pandemic phase, dominated
by the ancestral strain only, was carried out by31 with estimated SAR values
ranging from about 0.1 to about 0.45.

During the period under study, there were three primary variants of
concern, namely,Alpha,Delta, andOmicron.According to theUKOffice of
National Statistics32, the Alpha variant was dominant from the week ending
18 December 2020 to the week ending 15 May 2021, Delta from the week
ending 22 May 2021 to the week ending 19 December 2021 and Omicron
from the week ending 23 December 2021 to the week ending 5 September
2022. The average hSARbr during these periodswere 0.148 (95%CI, 0.125 to
0.17), 0.154 (95% CI, 0139 to 0.168), and 0.223 (95% CI, 0.202 to 0.245),
respectively. A meta-analysis of hSAR by variant30 reported corresponding
values of 0.364 (95%CI, 0.334 to 0.395), 0.297 (95%CI, 0.230 to 0.373), and
0.427 (95% CI, 0.354 to 0.504). There is generally good qualitative agree-
ment, with small differences in hSARbetweenAlpha andDelta, and amuch
larger hSAR for Omicron. Lyngse et al.33 analysed 87,677 individuals in
26,675 households in Denmark (restricted to sizes between 2–6 and an
averagehousehold sizeof 3.28) during theperiod9-22December2021 (after
contact tracing was stopped, but before the Christmas holidays com-
menced). During this period Omicron was replacing Delta as the dominant
variant. The SARwas estimated as 0.21 for householdswith aDelta primary
case, and 0.29 for households with an Omicron primary case.

Figure 1 provides the dates of commencement (and termination) of
primary interventions during the COVID-19 pandemic in England. We
observe that the hSARbr declines significantly in the month before the first
lockdown inMarch 2020. It continues to decline until restrictions are eased in
June 2020.As expected, the hSARbr thenprogressively increases.Weobserve a

steady decline in hSARbr beginning in January 2021, when COVID-19 vac-
cinations were introduced, until May 2021 when hSARbr estimates begin to
increase. We note that May 2021 marks the time when the Delta variant
becomes dominant. The hSARbr continues to increase until October 2022
whichmarks the introduction of the third vaccine dose. However, the hSARbr
increases after November 2022 as the Omicron variant becomes dominant.

Figure 3B clearly demonstrates that someTwitter users aremuchmore
reluctant to disclose the health status of household members. In fact, we
estimate that approximately 44% of household COVID-19 infections are
not reported. Nevertheless, it is straightforward to estimate the under-
reporting and correct for it. An alternative solutionmight have been to select
a cohort that was less reluctant, i.e. to select users for which ph was sig-
nificantly greater than 0. However, as discussed earlier, this leads to a very
large decline in the size of the monthly cohorts.

We assume in “Methods” that the household size is 2, since the average
household size in theUK is 2.334. Our estimates of hSAR are overestimated for
household sizes greater than 2 and, conversely, are underestimated for
household sizes of 1. On average, we assume that the two effects negate one
another as we do not have knowledge of a Tweeter’s household size. If such
knowledge is available, or the average household size is higher, e.g. 3, it is
straightforward to adjust the Methods accordingly. A further assumption is
that a user is only infectedonce. This is enforcedbyonly taking the singlemost
probable output or output pair from the classifiers. Relaxing this constraint is
also straightforward and effectively increases the cohort size, as a user and/or
household member will be counted multiple times, once for each period of
infection. However, the classifiers are noisy and the increased cohort size
comeswith the increased risk thatpositively classified infectionsare erroneous,
since we are essentially lowering the classifier thresholds. To reduce this risk,
and because the cohort sizes for eachmonth/weekwere adequate, we chose to
be conservative and only consider the single most likely infection.

We assumed a maximum serial interval of two weeks, i.e. if the two
cases are separated by more than two weeks, the cases were treated as
independent. The distribution of the serial interval, depicted in Fig. 4A, is
almost monotonically decreasing withmean andmedian values of 6.49 and
6 respectively.While thedistribution is similar to that in35, themean/median
values are larger than generally reported. A systematic review36 of research
articles studying the serial interval estimated that theweighted pooledmean
serial interval of COVID-19 was 5.2, and a serial interval of 4 days was
reported in a study in Spain37. Figure 4B-Ddepict the distributionduring the

Fig. 4 | Serial interval for Alpha, Delta, and Omicron dominant periods. Histo-
gram of serial interval for daily bins with an assumed maximum serial interval of
14 days for the periods A All the months from Jan 2020 to Feb 2022. B Alpha

dominant period (18 December 2020 to 15May 2021).CDelta dominant period (22
May 2021 to 19 December 2021).DOmicron dominant period (23 December 2021
to 28 February 2022).
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periods when the Alpha, Delta, and Omicron variants were dominant,
respectively. The serial intervals for Alpha and Delta are similar with mean
values of 6.67 and 6.61. However the distribution for theOmicron variant is
clearly different with a mean value of 6.10. While these serial intervals are
longer than previously reported elsewhere, they qualitatively support the
evidence that the SI for Omicron was shorter than those for the Alpha and
Delta variants. The pooledmean serial interval forDelta was estimated to be
3.9 days and Omicron 3.2 days38. The UKHSA39 has estimated Delta and
Omicron serial interval distributions from UK contact tracing data with
mean serial intervals of 3.87 days and 3.64 days respectively. Our analysis of
the serial interval has at least two potential sources of error. First, we assume
that the timestamps associatedwith the pair of tweets represents the dates of
the index and secondary infection. This may not be true - there may be
random lags between infection and associated tweet. Further, a tweet of the
form “I hadCOVID3days ago”will be classified as the user havingCOVID-
19 at the time the tweet was posted, not 3 days earlier. Further natural
language processing could detect and correct for this but remains an avenue
for future work.

There are several limitations to this study. At a practical level, Twitter’s
new restrictions are an impediment to replication and extensions to our study.
However, the impediment is not technological but financial. Twitter’s new
policies no longer permit free access to Tweets. Based on Twitter’s current
terms and conditions, we estimate that the data collection would now cost
betweenUS$700KtoUS$1.3M.Ofcourse, this is for aperiodof 26months.To
estimate the hSAR for a single month would cost between US$27K-US$50K.

The study only considered the UK and it may be the case that Twitter
behaviour is significantly different in other geographic regions. However,
there is evidence40 that there is considerable correlation in behaviour across
countries, both English speaking (Australia, USA) and non-English
speaking. It may be that the classifiers need to be re-trained to identify
relevant tweets. However, we note that we obtained sufficient accuracy with
a training set of 7894 tweets that were quickly and inexpensively labelled
using a crowdsourcing platform. The proposedmethodmay bemore useful
in low and middle income countries where the conventional health infra-
structure needed to support standard epidemiological studies of hSAR is
poor or absent, but access to the Web via mobile devices in prevalent.
However, verifying the utility of the method is difficult when ground truth
data is absent. We further note that the demographics of Twitter users is
unlikely to be fully representative of the UK population. It is reported41 that
there are 25.60million users in the United Kingdom in early 2024, of which
38.1% are female and 61.9% are male. Data from 201842 states that 33% or
users were between the ages of 15 to 24, and that more than half of all users
were above the age of 34.

Estimating household secondary attack using classic approaches
requires demographic data (household composition) epidemiological data
(dates of onset, etc.) andmicrobiological data (test results). Thismakes such
studies logistically complex, time consuming, and potentially expensive.
This new approach opens the potential for hSAR estimates that are cheaper,
faster and do not require the collection of data or biological specimens from
individuals. With the right calibration and adjustments, our results suggest
estimations are within similar ranges as classic methods.

Themethod is generalizable to other studies. In fact, our work builds on
previous work on estimating the hSAR for influenza, as noted earlier. Its
appropriateness to other infectious diseases is primarily determined by (i)
whether users are inclined/reluctant to tweet about the disease, and (ii) the
prevalence of the disease in a population. Thus, for example, it is unlikely to be
useful for sexually transmitted diseases where the associated stigma strongly
discourages public acknowledgement. Conversely, there have been several
studies estimating the prevalence of a variety of infectious diseases, including
dengue fever43, Zika44,45, andMonkeypox46 fromTwitter, and if prevalence can
be estimated, it is likely that the corresponding hSAR can also be estimated.

Methods
We first describe the data collection and pre-processing steps and then
describe the data analysis.

Data collection
Data collection consists of the following steps:
Step 1: Identify a seed group. For the period from January 2020 until March

2022 inclusive, we queried the Twitter API for all tweets that con-
tained keywords or phrase that implied that the tweeter or a
householdmember had COVID-19. The full set of keywords can be
found in the supplementarymaterial in SupplementaryMethods S4.
Examples of keywords or phrases are “I have covid”, “I have been
tested positive for corona”, “husband got covid” and “kid has
coronavirus”. Note that the keywords do not, by themselves, define
tweets as being about family. For example, a Tweet reading “Joe
Biden’swife’sfirst name is Jill” contains thekeyword “wife”but is not
about a family member. Similarly, the absence of a keyword, e.g.
“grandmother”, does not imply that there are no tweets containing
the word grandmother. For example, a tweet of “My wife is now a
grandmother”might be included in the training set since the tweet
contains the keyword “wife”. Note further, that the keywords are
only used to construct the training set, which is subsequently
manually labelled. During training, the classifiers are free to select
and weight any words to optimise performance. This query resulted
in a total of 2,001,896 tweets from 1,226,509 unique seed users.

Step 2: Geolocation. The 1,226,509 unique seed users can be located any-
where in the world. We therefore applied geolocation filtering to
retain only users whose tweets originate from the UK.
To identify if a user tweeted from the UK, we collect the user
information of each user. This is publicly available information
associatedwith aTwitter user account, and consists of severalfields,
including ‘user creation timestamp’, ‘user description’, and ‘location’.
If a Twitter user’s description is unavailable, we delete the user. This
reduced the number of unique users from 1,226,509 to 1,145,503.
We perform a keyword lookup in the user description and the
location fields to identify if the user belongs to the UK.We use a list
of the top 20most populated cities in the UK47 as well as additional
keywords. The additional keywords used are {‘England’, ‘Scotland’,
‘Wales’, ‘Northern Ireland’, ‘United Kingdom’, ‘UK’, ‘Newport’,
‘Belfast’, ‘Derry’}. This list includes four regions of the UK and the
top two most populated cities in these regions.
Many of the 23 cities in the United Kingdom have the same name as
cities in theUnited States or elsewhere. To disambiguate city names, a
user is considered tobe tweeting fromUKonly if the cityname(that is
same in theUK and any other country) is accompanied by one of the
keywords from the list {‘England’, ‘United Kingdom’, ‘UK’}. Note that
15 cities (Bristol, Leeds, Preston, Liverpool, London, England,
Islington, Reading, Sheffield, Birmingham, Leicester, Manchester,
Coventry, Nottingham, Sunderland) required disambiguation. For
example, ‘Liverpool’ is a city in both theUKand theUS.Wemark it as
UK location only if it is in one of the following forms {‘Liverpool,
England’, ‘Liverpool, United Kingdom’, ‘Liverpool, UK’}. Even though
‘London’ is located in theUK,US andCanada, we alwaysmark it as a
UK location because of its high population in the UK.
After geofiltering, the number of unique users is reduced from
1,145,503 to 77,016.

Step 3: Download users’ timelines. After geofiltering, we downloaded the
most recent 3200 tweets for each of the 75,440 users. Note that this is
less than the 77,016 remaining in the previous step, and reflects that
some users (1576) were no longer available. Note that 3200 is an
arbitrary number determined by the Twitter API. Also note, that
some users will have less than themaximumnumber of 3200 tweets.

Step 4: Filtering Twitter Cohort. Collecting the set of seed tweets and cor-
responding seed users occurred some months before we collected
users’ timelines.(This delay was in part due to staff interruptions
and the COVID-19 pandemic.) We observed that almost 19% of
users’ timelines did not include the original seed tweet. There are at
least two possible reasons for the absence of a seed tweet. First, the
user may have deleted the tweet. Second, for prolific tweeters, the
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duration of the 3200 timeline may not encompass the seed. We
decided to remove all users whose seed tweet was not found in their
time line. There were 13,010 prolific users (97.24%) out of 13,379
users not containing the seed tweets. This reduced the number of
unique users from 75,440 to 62,061.

Step 5: Filtering user’s timeline. We apply the Household classifier (C3) to
the timelines of each of the 62,061 users to determine each user’s
probability of tweeting about a household member. We remove all
userswhonever tweet about a householdmember. This reduces the
number of unique users from 62,061 to 58,555. More generally, we
can set a threshold on the probability, ph, of tweeting about a
household member and remove all users whose probabilities are
less than ph.

Step 6: Identifying a user’s COVID-19 tweet(s)Weassume that a user is only
infected once. However, usually there are multiple references to
infection in a user’s timeline. The following process was used tofilter
a user’s timeline to a single pair of tweets, one indicating that the user
had COVID-19 and the other that a household member was
infected, or a single tweet indicating that the user or household
member was infected.

We constructed three classifiers, see SupplementaryMethods S 6 and 7
for details, to independently identify whether a tweet was (i) about the user/
Tweeter having COVID-19, (ii) about a household member having
COVID-19, and/or (iii) about a household member (irrespective of topic),
denotedC1, C2, andC3, respectively. The classifiers were constructed based
on a labelled dataset of 7894 tweets created using a crowdsourcing platform.
Each tweet was labelled by three labellers. For all cases where there was
disagreement between labellers, the labellers were required to resolve the
discrepancies. The best performing classifiers, based on 10-fold cross vali-
dation, used CT-BERT48, and resulted in accuracies of 0.8886, 0.9324 and
0.7839 for the classifierC1, C2, andC3, respectively. TheAUCs for the three
classifiers are 0.907, 0.934, and 0.768, respectively.Note that for a tweet to be
classified as about a household member having COVID-19, it must also be
positively classified by both C2 and C3, i.e. the tweet must be classified as
both “about a household member having COVID-19” and “about a
household member”. Clearly, if this is not the case, one of the classifiers is
wrong, but which classifier is incorrect is unknown. In such cases, we
conservatively chose to ignore the positive classification.

For each user, u, we determine the sets of tweets {C1u} and {C2u} that
exceed the classifiers’ thresholds. {C1u} is the set of Tweets from user u that
were positively classified as being about the user, u, having COVID-19.
Similarly, {C2u} is the set ofTweets fromuseru thatwere positively classified
as being about the user, u’s, household members having COVID-19. Each
set may have 0, 1 or more entries.

We observed that each set may contain almost identical tweets, e.g. a
retweet of a previous tweet. To remove these copies we performed the
following steps:

1. We removed (i) all user-mentions starting with ‘@’, (ii) hyperlinks
or website links starting with ‘https’ or ‘www’, and (iii) replaced all
emojis with their textual equivalent using Python package
emoji.demojize. All that remains is alphanumeric text.

2. Tweets with identical text were then identified and only the earliest
tweet is retained.

This results in twofiltered sets fC10ug and fC20ug. The classifier score for
each tweet, i, in these sets is then converted to a “probability” with values
between 0 and 1 using the equation

P1ðu; iÞ ¼ 1
2
þ 1

2
� C1ðu; iÞ � τ1
maxðC1Þ � τ1

ð1Þ

P2ðu; jÞ ¼ 1
2
þ 1

2
� C2ðu; jÞ � τ2
maxðC2Þ � τ2

ð2Þ

where, C1(u, i) and C2(u, j) are the classification scores for C1 and C2 for
tweet i or j of user u. The classifier thresholds are denoted by τ1 and τ2. The
function max() returns the maximum score across all users from the clas-
sifier passed to it.

Next, we consider all fC10ug× fC20ug pairs of tweets. All tweets
include their corresponding date of publication (Timestamp). We
remove pairs where the time between them exceeds a specified
threshold (two weeks). The remaining pairs, if any, are ranked
according to the product of their probabilities. Only the top-ranked
pair is retained. This pair, if it exists, is given the date of the earliest of
the two tweets.

In the case where there is no pair, there are two possible scenarios:
• Either the set {C10u} or {C2

0
u} is empty. In this case, the user is assigned

to the category of the non-empty set.
– If {C10u} is not empty, the tweet with the maximum P1 is selected
– If {C20u} is not empty, the tweet with the maximum P2 is selected

• All pairs in fC10ug× fC20ug have a time difference of more than two
weeks. In this case, the two tweets with the maximum P1 and P2 are
retained.

Analysis
For a given month (week), we determine the set of users, A, who
tweeted that they and/or a household member had COVID-19 in this
month. The set A is the union of A1,0 (those that only tweet about
themselves), A2,0 (only about household members), A1,2 (those that
tweet about themselves and then household members), and A2,1

(household members then themselves).
Consider the two cases A1 = A1,0 ∪ A1,2, i.e. the subset of users

who only tweet about themselves having COVID-19 or who tweet that
they have COVID-19 before tweeting about a household member
having COVID-19, and A2 = A2,0 ∪ A2,1, i.e. the subset of users who
only tweet about a householdmember having COVID-19 or who tweet
that a household member has COVID-19 before tweeting about
themselves having COVID-19. Let a1 and a2 denote the actions of
tweeting about the user or a household member having COVID-19,
respectively. Then the probability that individual, i, will tweet about a
household member having COVID-19 after tweeting that they have
COVID-19 is

Piða2ja1Þ ¼ 1� ð1� α1Þn�1� �
Piða2jE2; a1Þ ð3Þ

whereE2 represents the event that ahouseholdmemberhasCOVID-19, and
1� ð1� α1Þn�1� �

represents the probability that a householdmemberwill
get infected given α1 is the secondary attack rate and n is the size of the
household. The average household size for UK is n = 2.3, so
(n− 1) = 1.3 ≈ 1, which gives us

Piða2ja1Þ ¼ α1Piða2jE2; a1Þ ð4Þ

As in26, we assume that Pi(a2∣E2, a1) is equal to Pi(a3), where, a3 denotes the
action of user i tweeting about a household member, irrespective of the
subject.

Summing over all m1 users in A1, and dividing both sides by m1, we
have

1
m1

Xm1

i�1

Piða2ja1Þ ¼
α1
m1

Xm1

i¼1

Piða3Þ ð5Þ

The LHS is simply the average probability, P(a2∣a1) of tweeting about
a household member with COVID-19 after tweeting that the user has
COVID-19, and can be empirically estimated as,

Pða2ja1Þ ¼
jA1;2j

jA1;2j þ jA1;0j
ð6Þ
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The SAR, α1, estimated from the cohort subset A1 is then

α1 ¼
jA1;2j

Pða3Þ× jA1;2j þ jA1;0j
� � ð7Þ

where

Pða3Þ ¼
1
m1

Xm1

i¼1

Piða3Þ ð8Þ

Similarly for the subsetA2, sinceweassume that thehousehold sizen = 2, the
probability that user, i, tweets about having COVID-19 after tweeting that a
household member has COVID-19 is simply

Piða1ja2Þ ¼ α2Piða1jE1; a2Þ ð9Þ

where α2 is the secondary attack rate, and E1 denotes the event that the
users has COVID-19. Since user i has already tweeted that a
householder has COVID-19, we assume that Pi(a1∣E1, a2) = 1. Note
that this probability is likely to be less than 1, so this is a lower bound
on the secondary attack rate. Summing Equation (9) over all users,m2,
and rearranging, we get

α2 ¼
1
m2

Xm2

i¼1

Piða1ja2Þ ð10Þ

The right hand side of Equation (10) is the average probability, P(a1∣a2),
which can be empirically estimated as

α2 ¼
jA2;1j

jA2;1j þ jA2;0j
ð11Þ

The overall SAR estimate, α, is a weighted average of α1 and α2, i.e.
α = α1w1+ α2w2 where w1 and w2 are given by Equation (12), respectively.

w1 ¼ jA1;2jþjA1;0j
jA1;2jþjA1;0jþjA2;1jþjA2;0j ¼

jA1;2jþjA1;0j
jAj

w2 ¼ jA2;1jþjA2;0j
jA1;2jþjA1;0jþjA2;1jþjA2;0j ¼

jA2;1jþjA2;0j
jAj

ð12Þ

This results in Equation (13) for SAR approximation.

hSARb ¼
Pða3Þ � jA2;1j þ jA1;2j

Pða3Þ � jA2;1j þ jA2;0j þ jA1;2j þ jA1;0j
� � ð13Þ

When P(a3) = 1, Equation (13) provides a lower bound for the SAR scores.

Adjustment for reluctance to tweet about household members.
Equation (13) includes an adjustment, P(a3) to account for user reluc-
tance to tweet about a household member. This probability should be
empirically estimated via Equation (8). However, in practice, the indi-
vidual probabilities,Pi(a3) are quite small and the resulting SAR estimates
were unstable with values sometimes exceeding 1. To resolve this issue,
we considered the two independent estimates of hSAR given by α2 andα1.
We assume a linear relationship, i.e.

α1;t ¼ gα2;t þ c ð14Þ

where tdenotes time inmonths orweeks. If therewas no reluctance to tweet
about a household member, we expect g = 1 and c = 0. In practice, the
empirical gradient is 0.56 and c = 0.06. We ignore the bias, c, and set
P(a3) = g. See Supplementary Methods S 1 of the Supplementary material
for further details.

Adjustment for infection outside of the household. The fact that a user
and a household member both acquire COVID-19 within a given serial

interval does not preclude the probability that the sources of both
infections may be outside the home. This probability increases as the
prevalence of the disease in the community increases. We accounted and
enumerated for this as follows.

For the given cohort (n = 58, 555) we created n/2 random pairs
assuming homogeneous mixing. The first member of the pair is considered
the user (primary infection) and the secondmember thehouseholdmember
(secondary infection). The monthly estimation of SAR proceeds as before
where the first member’s tweets about themselves having COVID-19 are
paired with the second member’s tweets about themselves having COVID-
19, i.e. the output from the classifier C2 is not used. The resulting values,
denoted rSAR, are an estimate of theprobability that the secondary infection
was acquired outside of the household. These monthly (weekly) estimates
are subtracted from our estimate hSARb to produce our final adjusted
estimate, hSARbr

hSARbr ¼ hSARb � rSAR ð15Þ

Inclusion and ethics statement
This research has been conducted in accordance with ethical standards and
principles. Approval for the study protocol, including the collection, analysis,
and publication of data, was obtained from the UCL Research Ethics Com-
mittee (REC), (i) UCL REC 16621/003 “Estimating the secondary attack rate
and serial interval of COVID-19 using Twitter” and (ii) the UCL Computer
Science REC /CSREC/R/30 “Estimating the secondary attack rate and serial
interval of COVID-19 using X, formerly known as Twitter”. Given the large
size of the Twitter cohort, obtaining informed consent from all participants
involved in the study was not feasible. This exception was approved by the
ethics committees at UCL REC 16621/003 and UCL/CSREC/R/30.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Twitter only permits up to a maximum of 1,500,000 Tweet IDs to be dis-
tributed.Due to this limitation,weonlyprovide theTweet ID’s of each of the
tweets that are positively classified by the three classifiers. We also provide
the labelled data used to train the three classifiers. This is a total of 460,979
ID’s. Data is available at https://figshare.com/s/375a15bbcca69af95822.

Code availability
The code for this study is publicly available at https://github.com/
AarzooDhiman/COVID_SAR. The code is licensed under a Creative
CommonsAttribution-NonCommercial 4.0 International License (CCBY-
NC 4.0).
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