
Stascal Natural Language Processing [COMP0087]

Recurrent Neural Networks

Vasileios Lampos
Computer Science, UCL

🖥 lampos.net

https://lampos.net

About this lecture

‣ In this lecture:
— brief overview on language models (more on this during the lecture by Dr. Oana-

Maria Camburu)
— Recurrent Neural Networks
— The Long Short-Term Memory (LSTM) architecture
— Applica$ons and extensions
— slides: lampos.net/teaching

‣ Reading / Lecture based on: Chapters 3 (less so), 7 (less so), and 9 (more so) of
“Speech and Language Processing” (SLP) by Jurafsky and Mar$n (2023) —
web.stanford.edu/~jurafsky/slp3/

‣ Addi$onal material
✴ Difficul$es in training RNNs — proceedings.mlr.press/v28/pascanu13.pdf
✴ LSTMs — colah.github.io/posts/2015-08-Understanding-LSTMs/

2COMP0087 - Recurrent Neural Networks

https://lampos.net/teaching
https://web.stanford.edu/~jurafsky/slp3/
https://proceedings.mlr.press/v28/pascanu13.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Text order is important

3COMP0087 - Recurrent Neural Networks

≠

+ + + + ++ ++=

Eric Clapton plays the guitar Eric Claptonplaysthe guitar

Language is a sequence of “events” over $me

Language model

4COMP0087 - Recurrent Neural Networks

A language model predicts the next word of a word sequence:

… and all of a sudden Eric Clapton started to play the ________

guitar

piano

game

drums

.

?

Language model

4COMP0087 - Recurrent Neural Networks

A language model predicts the next word of a word sequence:

… and all of a sudden Eric Clapton started to play the ________

guitar

piano

game

drums

.

p(xt+1 |xt, xt−1, …, x1)
Given a sequence of words x1, x2, …, xt

compute the probability of the next word

where xi ∈ 𝒱 (a word from our vocabulary)

Language model

?

We use language models all the $me

5COMP0087 - Recurrent Neural Networks

Language model evalua$on using perplexity (PPL)

6COMP0087 - Recurrent Neural Networks

PPL =
N

∏
t=1 (1

pℓ(xt+1 |xt, …, x1))
1
N

inverse probability of the corpus, according to the language model ℓ

number of tokens
in our corpus

lower is
be7er

Language model evalua$on using perplexity (PPL)

6COMP0087 - Recurrent Neural Networks

PPL =
N

∏
t=1 (1

pℓ(xt+1 |xt, …, x1))
1
N

inverse probability of the corpus, according to the language model ℓ

number of tokens
in our corpus

lower is
be7er

if , then our uncertainty about the next word is ~ equivalent to
the uncertainty of tossing a -sided dice and gedng a

PPL = δ
δ δ

Intui9on:

Language model evalua$on using perplexity (PPL)

6COMP0087 - Recurrent Neural Networks

PPL =
N

∏
t=1 (1

pℓ(xt+1 |xt, …, x1))
1
N

inverse probability of the corpus, according to the language model ℓ

number of tokens
in our corpus

PPL =
N

∏
t=1 (1

ŷ[t]
xt+1

)
1
N

the es$mated prob. at word that the next
word is based on the language model

t
xt+1

= ⋯ = exp(L(θ))

see 3.8 in SLP
cross entropy loss of a language

model parametrised by θ

lower is
be7er

if , then our uncertainty about the next word is ~ equivalent to
the uncertainty of tossing a -sided dice and gedng a

PPL = δ
δ δ

Intui9on:

Language model evalua$on using perplexity (PPL)

7COMP0087 - Recurrent Neural Networks

Model PPL

Interpolated Kneser-Ney 5-gram (2013) 67.6

RNN-1024 + MaxEnt 9-gram (2013) 51.3

LSTM-2048 (2016) 43.7

2-layer LSTM-8192 (2016) 30

Adaptive input Transformer (2019) 23.02

GPT-2 (2019) 16.45

Source 1: engineering.g.com/2016/10/25/ml-applica$ons/building-an-efficient-neural-language-model-over-a-billion-words/
Source 2: openreview.net/pdf?id=ByxZX20qFQ
Source 3: huggingface.co/docs/transformers/perplexity

But of course, there is a limit on how low perplexity can realisNcally be!

https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/
https://openreview.net/pdf?id=ByxZX20qFQ
https://huggingface.co/docs/transformers/perplexity

A founda$onal neural language model

8COMP0087 - Recurrent Neural Networks

another brick in the
x2x1 x3 x4

wordskzo
o

w
al

l

bu
ild

in
g

a

W
u1 u2 u3 u4

h

Q

ŷ

Paper: dl.acm.org/doi/pdf/10.5555/944919.944966

https://dl.acm.org/doi/pdf/10.5555/944919.944966

A founda$onal neural language model

8COMP0087 - Recurrent Neural Networks

another brick in the
x2x1 x3 x4

wordskzo
o

w
al

l

bu
ild

in
g

a

W
u1 u2 u3 u4

h

Q

ŷ

u = [u1; u2; u3; u4] ∈ ℝ4d

concatenate
word representa$ons

Paper: dl.acm.org/doi/pdf/10.5555/944919.944966

https://dl.acm.org/doi/pdf/10.5555/944919.944966

A founda$onal neural language model

8COMP0087 - Recurrent Neural Networks

another brick in the
x2x1 x3 x4

wordskzo
o

w
al

l

bu
ild

in
g

a

h = σ(W ⋅ u + bW) ∈ ℝm

W ∈ ℝm×4d W
u1 u2 u3 u4

h

Q

ŷ

u = [u1; u2; u3; u4] ∈ ℝ4d

concatenate
word representa$ons

Paper: dl.acm.org/doi/pdf/10.5555/944919.944966

https://dl.acm.org/doi/pdf/10.5555/944919.944966

A founda$onal neural language model

8COMP0087 - Recurrent Neural Networks

another brick in the
x2x1 x3 x4

wordskzo
o

w
al

l

bu
ild

in
g

a

h = σ(W ⋅ u + bW) ∈ ℝm

W ∈ ℝm×4d W
u1 u2 u3 u4

h

Q

ŷŷ = softmax(Q ⋅ h + bQ) ∈ [0,1]k

Q ∈ ℝk×m

u = [u1; u2; u3; u4] ∈ ℝ4d

concatenate
word representa$ons

Paper: dl.acm.org/doi/pdf/10.5555/944919.944966

https://dl.acm.org/doi/pdf/10.5555/944919.944966

A founda$onal neural language model

9COMP0087 - Recurrent Neural Networks

another brick in the
x2x1 x3 x4

wordskzo
o

w
al

l

bu
ild

in
g

a

W
u1 u2 u3 u4

h

Q

ŷ
h = σ(W ⋅ u + bW) ∈ ℝm

W ∈ ℝm×4d

ŷ = softmax(Q ⋅ h + bQ) ∈ [0,1]k

Q ∈ ℝk×m

u = [u1; u2; u3; u4] ∈ ℝ4d

Issues!
‣ context / window size is fixed

‣ grows if we increase the
window

‣ word posi$on is modelled
explicitly and independently, i.e.
there is no weight sharing
between words

W

Recurrent Neural Network (RNN) — Intui$on

10COMP0087 - Recurrent Neural Networks

xt ytht

Recurrent Neural Network (RNN) — Intui$on

10COMP0087 - Recurrent Neural Networks

ht−1

xt ytht

Recurrency
The current hidden state depends
on the previous hidden state and
influences the next hidden state

ht
ht−1

ht+1

Recurrent Neural Network (RNN) — Intui$on

10COMP0087 - Recurrent Neural Networks

ht−1

xt ytht

ht+1xt+1 yt+1

ht+2xt+2 yt+2

Recurrency
The current hidden state depends
on the previous hidden state and
influences the next hidden state

ht
ht−1

ht+1

The RNN unrolls to a theoreNcally
unlimited number of Nme steps

Recurrent Neural Networks (RNNs)

11COMP0087 - Recurrent Neural Networks

h[1] h[2] h[3] h[4]

W WWW

x2 x3x1 x4

ŷ[1] ŷ[4]ŷ[2] ŷ[3] ⋯

⋯

⋯

Recurrent Neural Networks (RNNs)

11COMP0087 - Recurrent Neural Networks

h[1] h[2] h[3] h[4]

W WWW

x2 x3x1 x4

ŷ[1] ŷ[4]ŷ[2] ŷ[3] ⋯

⋯

⋯sequence
of inputs in theory ∞

Recurrent Neural Networks (RNNs)

11COMP0087 - Recurrent Neural Networks

h[1] h[2] h[3] h[4]

W WWW

x2 x3x1 x4

ŷ[1] ŷ[4]ŷ[2] ŷ[3] ⋯

⋯

⋯sequence
of inputs in theory ∞

hidden states
of the RNN

i.e. the RNN layer remains
the same

W

core property!

Recurrent Neural Networks (RNNs)

11COMP0087 - Recurrent Neural Networks

h[1] h[2] h[3] h[4]

W WWW

x2 x3x1 x4

ŷ[1] ŷ[4]ŷ[2] ŷ[3] ⋯

⋯

⋯

op1onaloutput at each
$me step

sequence
of inputs in theory ∞

hidden states
of the RNN

i.e. the RNN layer remains
the same

W

core property!

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

another brick in the
x2x1 x3 x4

in theory
sequence length
can be unlimited

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

another brick in the

u[1] u[2] u[3] u[4]

x2x1 x3 x4
in theory

sequence length
can be unlimited

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

mm

another brick in the

u[1] u[2] u[3] u[4]

Wu

Wh

h[0] h[1]

x2x1 x3 x4

iniNal hidden state

in theory
sequence length
can be unlimited

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m mm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu

Wh Wh

h[0] h[1] h[2]

x2x1 x3 x4

iniNal hidden state

in theory
sequence length
can be unlimited

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

iniNal hidden state

in theory
sequence length
can be unlimited

wordsk

zoo

wall

building

a

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

iniNal hidden state

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)
Hidden states

or use tanh(⋅)

in theory
sequence length
can be unlimited

wordsk

zoo

wall

building

a

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

Output

ŷ = softmax(Wy ⋅ h[4] + by)
iniNal hidden state

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)
Hidden states

or use tanh(⋅)

in theory
sequence length
can be unlimited

wordsk

zoo

wall

building

a

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

Output

ŷ = softmax(Wy ⋅ h[4] + by)
iniNal hidden state

Dimensionali9es?

h[t], bh ∈ℝm

u[t] ∈ℝn embedding of xt from U∈ℝk×n

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)
Hidden states

or use tanh(⋅)

in theory
sequence length
can be unlimited

wordsk

zoo

wall

building

a

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

Output

ŷ = softmax(Wy ⋅ h[4] + by)
iniNal hidden state

Dimensionali9es?

Wu ∈ℝm×n , Wh ∈ℝm×m

h[t], bh ∈ℝm

Wy ∈ℝk×m

ŷ, by ∈ℝk

u[t] ∈ℝn embedding of xt from U∈ℝk×n

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)
Hidden states

or use tanh(⋅)

in theory
sequence length
can be unlimited

wordsk

zoo

wall

building

a

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

Output

ŷ = softmax(Wy ⋅ h[4] + by)
iniNal hidden state

Dimensionali9es?

Wu ∈ℝm×n , Wh ∈ℝm×m

h[t], bh ∈ℝm

Wy ∈ℝk×m

ŷ, by ∈ℝk

u[t] ∈ℝn embedding of xt from U∈ℝk×n

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)
Hidden states

or use tanh(⋅)

in theory
sequence length
can be unlimited

wordsk

zoo

wall

building

a

How many
parameters

does the RNN
have?

An RNN-based language model

12COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

Output

ŷ = softmax(Wy ⋅ h[4] + by)
iniNal hidden state

Dimensionali9es?

Wu ∈ℝm×n , Wh ∈ℝm×m

h[t], bh ∈ℝm

Wy ∈ℝk×m

ŷ, by ∈ℝk

u[t] ∈ℝn embedding of xt from U∈ℝk×n

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)
Hidden states

or use tanh(⋅)

in theory
sequence length
can be unlimited

wordsk

zoo

wall

building

a

How many
parameters

does the RNN
have?

= m ⋅ (n + m + 1)

13COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall …

RNN training

text sequence / corpus

at each 1me step we
predict a prob. dist.
over the en1re corpus
and determine the most
probable next word

Loss at each
1me step

θ = [Wu, Wh, Wy]

14COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall …

“brick” −log ̂y[1]()

=

RNN training

text sequence / corpus

at each 1me step we
predict a prob. dist.
over the en1re corpus
and determine the most
probable next word

Loss at each
1me step

θ = [Wu, Wh, Wy]

15COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall …

“brick” −log ̂y[1]() “in” −log ̂y[2]()

= =

RNN training

text sequence / corpus

at each 1me step we
predict a prob. dist.
over the en1re corpus
and determine the most
probable next word

Loss at each
1me step

θ = [Wu, Wh, Wy]

16COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall …

“brick” −log ̂y[1]() “in” −log ̂y[2]() “the” −log ̂y[3]()

= = =

RNN training

text sequence / corpus

at each 1me step we
predict a prob. dist.
over the en1re corpus
and determine the most
probable next word

Loss at each
1me step

θ = [Wu, Wh, Wy]

17COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall …

“brick” −log ̂y[1]() “in” −log ̂y[2]() “the” −log ̂y[3]() “Wall” −log ̂y[4]()

= = = =

RNN training

text sequence / corpus

at each 1me step we
predict a prob. dist.
over the en1re corpus
and determine the most
probable next word

Loss at each
1me step

θ = [Wu, Wh, Wy]

18COMP0087 - Recurrent Neural Networks

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall …

“brick” −log ̂y[1]() “in” −log ̂y[2]() “the” −log ̂y[3]() “Wall” −log ̂y[4]()

= = = =

RNN training

text sequence / corpus

+ + + + … = L(θ) =
1
T

T

∑
t=1

L[t](θ)

at each 1me step we
predict a prob. dist.
over the en1re corpus
and determine the most
probable next word

cumula1ve cross-
entropy loss, i.e. the
mean loss across all
1me steps

Loss at each
1me step

θ = [Wu, Wh, Wy]

19COMP0087 - Recurrent Neural Networks

RNN training in pracNce

‣ The number of tokens, , across a large corpus is obviously quite large!

‣ Compu$ng becomes too computa9onally expensive…

‣ Instead we (once again) work with a specified window of text, say a sentence

‣ We compute for a batch of sentences, then compute the gradient of the
loss with respect to the parameters of the network, and then update the
parameters.

‣ We repeat this on a new batch un$l we eventually pass across the en$re corpus.

‣ And then we go back to the beginning and repeat the en$re process (a new
training epoch), if necessary.

T

L(θ)

L(θ)

L(θ) =
1
T

T

∑
t=1

L[t](θ)

20COMP0087 - Recurrent Neural Networks

RNN training in pracNce

‣ The number of tokens, , across a large corpus is obviously quite large!

‣ Compu$ng becomes too computa9onally expensive…

‣ Instead we (once again) work with a specified window of text, say a sentence

‣ We compute for a batch of sentences, then compute the gradient of the
loss with respect to the parameters of the network, and then update the
parameters.

‣ We repeat this on a new batch un$l we eventually pass across the en$re corpus.

‣ And then we go back to the beginning and repeat the en$re process (a new
training epoch), if necessary.

T

L(θ)

L(θ)

L(θ) =
1
T

T

∑
t=1

L[t](θ)
how?

Training the parameters of RNNs

21COMP0087 - Recurrent Neural Networks

m m mmm

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

During training, one of the deriva$ves we need to es$mate is:
∂L[t]

∂Wh

Training the parameters of RNNs

21COMP0087 - Recurrent Neural Networks

m m mmm

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

During training, one of the deriva$ves we need to es$mate is:
∂L[t]

∂Wh

∂L[t]

∂Wh
=

t

∑
i=1

∂L[t]

∂Wh (i)
This is given by: we are summing up the

gradients at each Nme step

Training the parameters of RNNs

21COMP0087 - Recurrent Neural Networks

m m mmm

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

During training, one of the deriva$ves we need to es$mate is:
∂L[t]

∂Wh

∂L[t]

∂Wh
=

t

∑
i=1

∂L[t]

∂Wh (i)
This is given by: we are summing up the

gradients at each Nme step

for each $me step the
par$al deriva$ve

depends on different upstream
variables

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

Example

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)Example

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)Example

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

Example

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

Example

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

=

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

= 3

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

⋅ 2t +

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

= 3

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

⋅ 2t + 2y

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

= 3

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

⋅ 2t + 2y

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

= 3 ⋅ 1

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

⋅ 2t + 2y

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

= 3 ⋅ 1

= 6t + 2(t − 1)

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

⋅ 2t + 2y

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

= 3 ⋅ 1

= 6t + 2(t − 1)

= 8t − 2

Example mul$variate
chain rule

Mul$variable chain rule

22COMP0087 - Recurrent Neural Networks

d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

x(t) = t2

y(t) = t − 1

f(x, y) = 3x + y2 f(x, y) = 3x(t) + y(t)2

= 3t2 + (t − 1)2

df
dt

= 8t − 2

⋅ 2t + 2y

Total deriva$ve of a mul$variable func$on
 that depends on two single

variable func$ons and
f(x(t), y(t))

x(t) y(t)

trivial solu$on
(not always possible)

= 4t2 − 2t + 1

df
dt

= 3 ⋅ 1

= 6t + 2(t − 1)

= 8t − 2

Example

helpful when a
funcNon is unknown!

mul$variate
chain rule

BackPropaga$on Through Time (BPTT)

23COMP0087 - Recurrent Neural Networks

Backpropaga$on Through Time (BPTT)

COMP0087 - Recurrent Neural Networks

m m mmm

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

23

∂L[t]

∂Wh
=

t

∑
i=1

∂L[t]

∂Wh (i)

backpropaga$on over $me steps
, summing gradients,

a.k.a. backpropaga9on through
9me (BPTT)

t, t − 1,…, 0

BackPropaga$on Through Time (BPTT)

23COMP0087 - Recurrent Neural Networks

Backpropaga$on Through Time (BPTT)

COMP0087 - Recurrent Neural Networks

m m mmm

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

23

∂L[t]

∂Wh
=

t

∑
i=1

∂L[t]

∂Wh (i)

backpropaga$on over $me steps
, summing gradients,

a.k.a. backpropaga9on through
9me (BPTT)

t, t − 1,…, 0

24COMP0087 - Recurrent Neural Networks

m m mmm

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Backpropaga$on through $me (BPTT)

Wu Wu WuWu

24COMP0087 - Recurrent Neural Networks

m m mmm

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Backpropaga$on through $me (BPTT)

L(θ) =
1
4

4

∑
t=1

L[t](θ)

Wu Wu WuWu

24COMP0087 - Recurrent Neural Networks

m m mmm

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Backpropaga$on through $me (BPTT)

L(θ) =
1
4

4

∑
t=1

L[t](θ)

Wu Wu WuWu

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh

24COMP0087 - Recurrent Neural Networks

m m mmm

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Backpropaga$on through $me (BPTT)

L(θ) =
1
4

4

∑
t=1

L[t](θ)

Wu Wu WuWu

∂L[t]

∂Wh
=

t

∑
k=1

∂L[t]

∂ŷ[t]
⋅

∂ŷ[t]

∂h[t]
⋅

∂h[t]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh

24COMP0087 - Recurrent Neural Networks

m m mmm

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Backpropaga$on through $me (BPTT)

L(θ) =
1
4

4

∑
t=1

L[t](θ)

Wu Wu WuWu

∂h[t]

∂h[k]
=

t

∏
j=k+1

∂h[j]

∂h[j−1]

∂L[t]

∂Wh
=

t

∑
k=1

∂L[t]

∂ŷ[t]
⋅

∂ŷ[t]

∂h[t]
⋅

∂h[t]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh

24COMP0087 - Recurrent Neural Networks

m m mmm

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Backpropaga$on through $me (BPTT)

L(θ) =
1
4

4

∑
t=1

L[t](θ)

Wu Wu WuWu

e.g. if t = 4 and k = 1
∂h[4]

∂h[1]
=

4

∏
j=2

∂h[j]

∂h[j−1]
=

∂h[2]

∂h[1]
⋅

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]

∂h[t]

∂h[k]
=

t

∏
j=k+1

∂h[j]

∂h[j−1]

∂L[t]

∂Wh
=

t

∑
k=1

∂L[t]

∂ŷ[t]
⋅

∂ŷ[t]

∂h[t]
⋅

∂h[t]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh

25COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[2] h[3] h[4]

ŷ[4]

Wy

L[4](θ)

Vanishing (or exploding) gradients

∝
∂h[4]

∂h[1]
+

∂h[4]

∂h[2]
+

∂h[4]

∂h[3]
+

∂h[4]

∂h[4]

∂L[4]

∂Wh
=

4

∑
k=1

∂L[4]

∂ŷ[4]
⋅

∂ŷ[4]

∂h[4]
⋅

∂h[4]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh
=

∂L[1]

∂Wh
+

∂L[2]

∂Wh
+

∂L[3]

∂Wh
+

∂L[4]

∂Wh

let’s focus on this
component of the sum

25COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[2] h[3] h[4]

ŷ[4]

Wy

L[4](θ)

Vanishing (or exploding) gradients

∝
4

∑
k=1

4

∏
j=k+1

∂h[j]

∂h[j−1]

∂h[4]

∂h[k]
=

4

∏
j=k+1

∂h[j]

∂h[j−1]

recall

∝
∂h[4]

∂h[1]
+

∂h[4]

∂h[2]
+

∂h[4]

∂h[3]
+

∂h[4]

∂h[4]

∂L[4]

∂Wh
=

4

∑
k=1

∂L[4]

∂ŷ[4]
⋅

∂ŷ[4]

∂h[4]
⋅

∂h[4]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh
=

∂L[1]

∂Wh
+

∂L[2]

∂Wh
+

∂L[3]

∂Wh
+

∂L[4]

∂Wh

let’s focus on this
component of the sum

25COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[2] h[3] h[4]

ŷ[4]

Wy

L[4](θ)

Vanishing (or exploding) gradients

⟹
∂L[4]

∂Wh
∝

∂h[2]

∂h[1]
⋅

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[4]

∂h[3]
∝

4

∑
k=1

4

∏
j=k+1

∂h[j]

∂h[j−1]

∂h[4]

∂h[k]
=

4

∏
j=k+1

∂h[j]

∂h[j−1]

recall

∝
∂h[4]

∂h[1]
+

∂h[4]

∂h[2]
+

∂h[4]

∂h[3]
+

∂h[4]

∂h[4]

∂L[4]

∂Wh
=

4

∑
k=1

∂L[4]

∂ŷ[4]
⋅

∂ŷ[4]

∂h[4]
⋅

∂h[4]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh
=

∂L[1]

∂Wh
+

∂L[2]

∂Wh
+

∂L[3]

∂Wh
+

∂L[4]

∂Wh

let’s focus on this
component of the sum

25COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[2] h[3] h[4]

ŷ[4]

Wy

L[4](θ)

Vanishing (or exploding) gradients

⟹
∂L[4]

∂Wh
∝

∂h[2]

∂h[1]
⋅

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[4]

∂h[3]

what if these are
small (or large)?

∝
4

∑
k=1

4

∏
j=k+1

∂h[j]

∂h[j−1]

∂h[4]

∂h[k]
=

4

∏
j=k+1

∂h[j]

∂h[j−1]

recall

∝
∂h[4]

∂h[1]
+

∂h[4]

∂h[2]
+

∂h[4]

∂h[3]
+

∂h[4]

∂h[4]

∂L[4]

∂Wh
=

4

∑
k=1

∂L[4]

∂ŷ[4]
⋅

∂ŷ[4]

∂h[4]
⋅

∂h[4]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh
=

∂L[1]

∂Wh
+

∂L[2]

∂Wh
+

∂L[3]

∂Wh
+

∂L[4]

∂Wh

let’s focus on this
component of the sum

25COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[2] h[3] h[4]

ŷ[4]

Wy

L[4](θ)

Vanishing (or exploding) gradients

⟹
∂L[4]

∂Wh
∝

∂h[2]

∂h[1]
⋅

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[4]

∂h[3]

vanishing (or exploding)
gradient as we
backpropagate!

what if these are
small (or large)?

∝
4

∑
k=1

4

∏
j=k+1

∂h[j]

∂h[j−1]

∂h[4]

∂h[k]
=

4

∏
j=k+1

∂h[j]

∂h[j−1]

recall

∝
∂h[4]

∂h[1]
+

∂h[4]

∂h[2]
+

∂h[4]

∂h[3]
+

∂h[4]

∂h[4]

∂L[4]

∂Wh
=

4

∑
k=1

∂L[4]

∂ŷ[4]
⋅

∂ŷ[4]

∂h[4]
⋅

∂h[4]

∂h[k]
⋅

∂h[k]

∂Wh

∂L
∂Wh

=
4

∑
t=1

∂L[t]

∂Wh
=

∂L[1]

∂Wh
+

∂L[2]

∂Wh
+

∂L[3]

∂Wh
+

∂L[4]

∂Wh

let’s focus on this
component of the sum

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

∂h[t]

∂h[t−1]
=

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh) let’s ignore the acvaon func$on σ

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

∂h[t]

∂h[t−1]
=

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Wh

let’s ignore the acvaon func$on σ

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

∂h[t]

∂h[t−1]
=

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Wh

let’s ignore the acvaon func$on σ

let’s now see what happens when we compute
the par$al deriva$ve of hidden state w.r.t.

the hidden state $me steps before it, i.e.
h[t]

ξ h[t−ξ]
∂h[t]

∂h[t−ξ]
=

∂h[t]

∂h[t−1]
⋅ ⋯ ⋅

∂h[t−ξ−1]

∂h[t−ξ]

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

∂h[t]

∂h[t−1]
=

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Wh

let’s ignore the acvaon func$on σ

let’s now see what happens when we compute
the par$al deriva$ve of hidden state w.r.t.

the hidden state $me steps before it, i.e.
h[t]

ξ h[t−ξ]
∂h[t]

∂h[t−ξ]
=

∂h[t]

∂h[t−1]
⋅ ⋯ ⋅

∂h[t−ξ−1]

∂h[t−ξ]

ξ components

= Wξ
h

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

∂h[t]

∂h[t−1]
=

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Wh

let’s ignore the acvaon func$on σ

let’s now see what happens when we compute
the par$al deriva$ve of hidden state w.r.t.

the hidden state $me steps before it, i.e.
h[t]

ξ h[t−ξ]
∂h[t]

∂h[t−ξ]
=

∂h[t]

∂h[t−1]
⋅ ⋯ ⋅

∂h[t−ξ−1]

∂h[t−ξ]

ξ components

= Wξ
h

‣ If has eigenvalues , gradients become exponen$ally smaller
as $me steps increase gradients will become , i.e. vanish

Wh < 1
ξ ⟹ 0

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

∂h[t]

∂h[t−1]
=

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Wh

let’s ignore the acvaon func$on σ

let’s now see what happens when we compute
the par$al deriva$ve of hidden state w.r.t.

the hidden state $me steps before it, i.e.
h[t]

ξ h[t−ξ]
∂h[t]

∂h[t−ξ]
=

∂h[t]

∂h[t−1]
⋅ ⋯ ⋅

∂h[t−ξ−1]

∂h[t−ξ]

ξ components

= Wξ
h

‣ If has eigenvalues , gradients become exponen$ally smaller
as $me steps increase gradients will become , i.e. vanish

Wh < 1
ξ ⟹ 0

‣ If has eigenvalues gradients will explodeWh > 1 ⟹

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

26COMP0087 - Recurrent Neural Networks

Vanishing (or exploding) gradients — Proof intui$on

∂h[t]

∂h[t−1]
=

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Wh

let’s ignore the acvaon func$on σ

let’s now see what happens when we compute
the par$al deriva$ve of hidden state w.r.t.

the hidden state $me steps before it, i.e.
h[t]

ξ h[t−ξ]
∂h[t]

∂h[t−ξ]
=

∂h[t]

∂h[t−1]
⋅ ⋯ ⋅

∂h[t−ξ−1]

∂h[t−ξ]

ξ components

= Wξ
h

‣ If has eigenvalues , gradients become exponen$ally smaller
as $me steps increase gradients will become , i.e. vanish

Wh < 1
ξ ⟹ 0

‣ If has eigenvalues gradients will explodeWh > 1 ⟹
‣ Similar outcome when we re-introduce an acvaon func$on

Paper: proceedings.mlr.press/v28/pascanu13.pdf

https://proceedings.mlr.press/v28/pascanu13.pdf

Vanishing gradients are an issue because…

27COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[t−2] h[t−1] h[t]

ŷ[t]

Wy

L[t](θ)

⋯
Wh

ŷ[t−2]

Wy

L[t−2](θ)

Vanishing gradients are an issue because…

27COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[t−2] h[t−1] h[t]

ŷ[t]

Wy

L[t](θ)

⋯
Wh

‣ Signal (gradient) from early states that are distant to the current
state is lost long-terms effects are not captured⟹

ŷ[t−2]

Wy

L[t−2](θ)

Vanishing gradients are an issue because…

27COMP0087 - Recurrent Neural Networks

m m mm

Wh WhWh

h[1] h[t−2] h[t−1] h[t]

ŷ[t]

Wy

L[t](θ)

⋯
Wh

‣ Signal (gradient) from early states that are distant to the current
state is lost long-terms effects are not captured⟹

‣ NB: Parameters will s$ll be updated, but based on shorter-term
gradients that have not vanished.

ŷ[t−2]

Wy

L[t−2](θ)

Exploding gradients

28COMP0087 - Recurrent Neural Networks

2
1

31

0
-10

32

1

-2

L
(3

)

-1 -20

2

1 2

random starting point
L (no explosion)
L (exploded)

‣ Large gradients, , mean large learning steps

during op$misa$on

∂L
∂θj

Exploding gradients

28COMP0087 - Recurrent Neural Networks

θj+1 = θj − η
∂L
∂θj

2
1

31

0
-10

32

1

-2

L
(3

)

-1 -20

2

1 2

random starting point
L (no explosion)
L (exploded)

‣ Large gradients, , mean large learning steps

during op$misa$on

∂L
∂θj

‣ This would possibly result in a poor parameter
sedng from which we might not be able to
recover, especially while using large learning
steps

Exploding gradients

28COMP0087 - Recurrent Neural Networks

θj+1 = θj − η
∂L
∂θj

2
1

31

0
-10

32

1

-2

L
(3

)

-1 -20

2

1 2

random starting point
L (no explosion)
L (exploded)

‣ Large gradients, , mean large learning steps

during op$misa$on

∂L
∂θj

‣ This would possibly result in a poor parameter
sedng from which we might not be able to
recover, especially while using large learning
steps

‣ The worst penalty to pay would be NaN / Inf
errors in the NN parameters; training will have
to be restarted

Exploding gradients

28COMP0087 - Recurrent Neural Networks

θj+1 = θj − η
∂L
∂θj

2
1

31

0
-10

32

1

-2

L
(3

)

-1 -20

2

1 2

random starting point
L (no explosion)
L (exploded)

An “easy” solu$on to exploding gradients — Gradient clipping

29COMP0087 - Recurrent Neural Networks

‣ If the L2 norm of the gradient is greater than a threshold , simply scale the
gradient down, i.e. clip it!

‣ We are s$ll taking a step in the same direc$on, albeit a smaller one

‣ We need to learn / set the threshold ; a good heuris$c to $mes the
average norm of the gradient over a sufficient number of updates

γ

γ 0.5 10

q =
∂L
∂θ

if ∥q∥ ≥ γ then

q =
γ

∥q∥
⋅ q

endif

Long Short-Term Memory (LSTM) — A beuer RNN

30COMP0087 - Recurrent Neural NetworksPaper: bioinf.jku.at/publica$ons/older/2604.pdf

‣ Simple RNNs fail to maintain informa9on over many 9me steps as their
architecture does not have explicit components to do so

‣ Long Short-Term Memory (LSTM) is an update to the RNN architecture with the
aim of solving the problem of vanishing gradients

‣ The LSTM has a hidden state like the simple RNN, but also a “cell” state, both
being -dimensional vectors

‣ The cell is designed to store more long-term informa$on and acts like a memory
module — the LSTM can read, delete, and write informa$on to the cell

‣ 3 new -dimensional vectors control what is read, deleted, and wriuen; however
their decisions are “probabilis$c” for each of the dimensions (not or)
and are learned during op$misa$on

n

n
∈ [0,1] n 0 1

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

https://www.bioinf.jku.at/publications/older/2604.pdf

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]Cell state: forget some past, keep some present

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]Cell state: forget some past, keep some present

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)Output gate: what parts of the cell state will be
passed on to the hidden state

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]Cell state: forget some past, keep some present

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)Output gate: what parts of the cell state will be
passed on to the hidden state

h[t] = o[t] ⊙ tanh(c[t])Hidden state: maintains the part of the cell state
that will pass from the output gate

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]Cell state: forget some past, keep some present

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)Output gate: what parts of the cell state will be
passed on to the hidden state

h[t] = o[t] ⊙ tanh(c[t])Hidden state: maintains the part of the cell state
that will pass from the output gate

⊙
Hadamard or
element-wise

product

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

all gate values range from to
given the sigmoid acvaon ()

 and

0 1
σ

f[t], i[t], o[t] ∈ (0,1)n

c̃[t], h[t] ∈ (−1,1)n c[t] ∈ ℝn

independent from each other
could be computed in parallel

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]Cell state: forget some past, keep some present

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)Output gate: what parts of the cell state will be
passed on to the hidden state

h[t] = o[t] ⊙ tanh(c[t])Hidden state: maintains the part of the cell state
that will pass from the output gate

⊙
Hadamard or
element-wise

product

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

all gate values range from to
given the sigmoid acvaon ()

 and

0 1
σ

f[t], i[t], o[t] ∈ (0,1)n

c̃[t], h[t] ∈ (−1,1)n c[t] ∈ ℝn

independent from each other
could be computed in parallel

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]Cell state: forget some past, keep some present

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)Output gate: what parts of the cell state will be
passed on to the hidden state

h[t] = o[t] ⊙ tanh(c[t])Hidden state: maintains the part of the cell state
that will pass from the output gate

⊙
Hadamard or
element-wise

product

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

all gate values range from to
given the sigmoid acvaon ()

 and

0 1
σ

f[t], i[t], o[t] ∈ (0,1)n

c̃[t], h[t] ∈ (−1,1)n c[t] ∈ ℝn

If , how many parameters?u[t] ∈ ℝm

independent from each other
could be computed in parallel

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an
input sequence and there is a
dependency to the previous hidden state

u[1], …, u[t]

h[t−1]

Long Short-Term Memory (LSTM)

31COMP0087 - Recurrent Neural Networks

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)Forget gate: what should be forgouen from the
previous cell state; ~ forget keep.0 → 1 →

i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)Input gate: what should be kept from the new
content?

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]Cell state: forget some past, keep some present

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)Output gate: what parts of the cell state will be
passed on to the hidden state

h[t] = o[t] ⊙ tanh(c[t])Hidden state: maintains the part of the cell state
that will pass from the output gate

⊙
Hadamard or
element-wise

product

n

another brick in the

u[1] u[2] u[3] u[t]

n nn

⋯

LSTM

h[t]

c[t]

all gate values range from to
given the sigmoid acvaon ()

 and

0 1
σ

f[t], i[t], o[t] ∈ (0,1)n

c̃[t], h[t] ∈ (−1,1)n c[t] ∈ ℝn

If , how many parameters?u[t] ∈ ℝm = 4 ⋅ n ⋅ (m + n + 1)

The LSTM (confusing/arNsNc) schema$c

32COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t] u[t+1]u[t−1]

h[t−1] h[t+1]

tanh

More: colah.github.io/posts/2015-08-Understanding-LSTMs/

element-wise
opera$on

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

forget gate

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

forget gate

input gate
f[t]

i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

forget gate

input gate

new cell content

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

forget gate

input gate

new cell content

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

cell state

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

forget gate

input gate

new cell content

output gate

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

cell state

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

forget gate

input gate

new cell content

output gate

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

cell state

hidden state

The LSTM (confusing/arNsNc) schema$c

33COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

forget gate

input gate

new cell content

output gate

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

f[t] = σ(Uf ⋅ u[t] + Wf ⋅ h[t−1] + bf)
i[t] = σ(Ui ⋅ u[t] + Wi ⋅ h[t−1] + bi)

o[t] = σ(Uo ⋅ u[t] + Wo ⋅ h[t−1] + bo)

c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)

c[t] = f[t] ⊙ c[t−1] + i[t] ⊙ c̃[t]

h[t] = o[t] ⊙ tanh(c[t])

cell state

hidden state

key takeaway: the
current cell state, , and

the previous cell state
 are being added

ct

ct−1

LSTM resolves the vanishing gradient issue

34COMP0087 - Recurrent Neural Networks

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]‣ LSTM can preserve informa$on over many $me steps using its gates

‣ LSTM: If the forget gate value is set to for a cell dimension and the
corresponding input gate value , then the cell value from the previous $me
step, , is maintained intact

‣ Simple RNN: much harder to maintain previous state informa$on given at least an
en$re row of the recurrent matrix should be set to which in turn will
invalidate the en$re RNN ra$onale:

‣ Depends on the task, but say an RNN can model ~10 $me steps accurately, then
an LSTM can probably capture ~100 $me steps

f[t]
i = 1 i

i[t]i = 0
c[t−1]

i

Wh 1
h[t]

j ∝ Wh[j, :] ⋅ h[t−1]

Text genera$on with RNNs

35COMP0087 - Recurrent Neural Networks

Name: Fish and chips with Broccoli and Salad of Creamy Thyme Broth

Ingredients:
• 1 cup frozen peas, thawed
• 1/4 cup chopped fresh cilantro leaves
• 1 tablespoon finely chopped fresh dill
• 1/2 cup sugar
• 1/2 cup corn tor$llas
• 1 cup shredded smoked mozzarella or parmesan cheese
• 1/2 cup white wine
• 1 cup chicken broth
• Salt and pepper

Instruc6ons: Season salad with salt and pepper. In a large saute pan over
medium-high heat, cook poblano pepper for 1 minute. Add broccoli rabe,
spring onions, thyme, and bay leaves and sprinkle with salt and pepper to
taste. Cook unNl vegetables are soZ, about 10 minutes. Add the spinach and
sNr unNl completely melted. Add sugar and simmer unNl sauce thickens,
about 1 minute. Remove from heat and sNr in lemon juice. Serve with
steamed roasted garlic bread.

Input: “Fish and chips”

Recipe RNN LM output
Source: trekhleb.dev/machine-learning-experiments/#/

experiments/RecipeGenera$onRNN

https://trekhleb.dev/machine-learning-experiments/#/experiments/RecipeGenerationRNN
https://trekhleb.dev/machine-learning-experiments/#/experiments/RecipeGenerationRNN

Text genera$on with RNNs — Trends captured by LSTM cells

36COMP0087 - Recurrent Neural Networks

Certain LSTM cells “learn” to have larger values…

towards the end of a line

inside if statements

Source: karpathy.github.io/2015/05/21/rnn-effec$veness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Text genera$on with RNNs — Trends captured by LSTM cells

37COMP0087 - Recurrent Neural Networks

Certain LSTM cells “learn” to have larger values…

when the code expression’s
depth increases

Source: karpathy.github.io/2015/05/21/rnn-effec$veness/

inside comments or
double quotes

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

RNN applica$ons — Sequence tagging

38COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

e.g. tasks like part-of-
speech (POS) tagging
and named en9ty
recogni9on (NER)

noun noun verb determiner adjec9ve noun

RNN applica$ons — Sentence encoding

39COMP0087 - Recurrent Neural Networks

e.g. text / sentence,
senNment classificaNon

Windows awas great failureMe

nega9ve

combine all hidden
states (element-
wise mean or max)

RNN applica$ons — Encoding units in larger architectures

40COMP0087 - Recurrent Neural Networks

Clapton songthe Layla ?writeEricDid

other NN
units

other NN units

Yes with Jim Gordon, and arguably
with Rita Coolidge as well.Response:

Bidirec$onal RNNs

41COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

Bidirec$onal RNNs

41COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

“forward” RNN

Bidirec$onal RNNs

41COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

“forward” RNN

“backward” RNN

Bidirec$onal RNNs

41COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

“forward” RNN

“backward” RNN

Hidden state
via concatena$on
has context from
both direc$ons

Bidirec$onal RNNs

41COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

“forward” RNN

“backward” RNN

Hidden state
via concatena$on
has context from
both direc$ons

“great” product vs. “great” failure

Bidirec$onal RNNs

42COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

“forward” RNN

“backward” RNN

Hidden state
via concatena$on
has context from
both direc$ons

h [t] = RNNF (h [t−1], u[t])

h [t] = RNNB (h [t+1], u[t])

h[t] = [h [t] ; h [t]]

different
weights

hidden state of the
bidirec9onal RNN

Bidirec$onal RNNs

43COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

Hidden state of the
bidirecNonal RNN

bidirecNonal arrow convenNon

Bidirec$onal RNNs

44COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

‣ Bidirec$onal RNNs are very effec$ve in
sequence classifica$on

‣ They requires access to the en$re sequence,
i.e. not necessarily great for language models
(text generators)

‣ Bidirec$onal NNs are strong predictors, i.e.
BERT: Bidirec$onal Encoder Representa$ons
from Transformers
aclanthology.org/N19-1423.pdf

https://aclanthology.org/N19-1423.pdf

Stacked (mulN-layer) RNNs

45COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

the output of one
RNN layer (hidden
state) becomes the
input to the next

lower-level
features

higher-level
features

Stacked (mulN-layer) RNNs

45COMP0087 - Recurrent Neural Networks

Windows awas great failureMe

the output of one
RNN layer (hidden
state) becomes the
input to the next

Next lecture with me

46

‣ Monday, March 18 (last week)

‣ Self-invited “guest” lecture on “Modelling infecNous disease
prevalence using web search acNvity”

COMP0087 - Recurrent Neural Networks

probability (on the x-axis), we compute the empirical probability for each of the four test sea-
sons. The diagonal line (y = x) represents perfect calibration, i.e. the expected and empirical
probabilities are the same. Points above the diagonal indicate that the uncertainty estimates
are too large. Conversely, points below it indicate that the uncertainty estimates are too low.
The shadow around the calibration curve shows the variation due to different initialisation
seeds over 10 NN training runs (see Methods for further details). Uncertainties produced by
the IRNN are closer to the diagonal (i.e. better estimates of uncertainty) for horizon windows
greater than 7. Overall, we see that FF is an under-confident model, SRNN an over-confident
model, and IRNN generally more balanced, but the error in confidence increases for the largest
forecast horizon (γ = 28).

Comparison with state-of-the-art

We compare our best model for each forecasting horizon i.e., SRNN for γ = 7 and IRNN for
γ� 14, to a state-of-the-art ILI rate forecasting model, known as ‘Dante’ [21]. Its original
implementation, Dante produces a binned forecast and does not permit comparison based on
CRPS or NLL (see S1 Appendix). Therefore, for this analysis we restrict the performance met-
rics to Skill, MAE, bivariate, and correlation.

To be consistent with prior published literature and conduct a fair comparison, we adopt
exactly the same training setup as proposed in the original paper that proposed Dante [21].
However, we would like to make the reader aware of various caveats in this comparison. First,
Dante’s national US ILI rate forecasts are based on ILI rates from 63 subnational US

Fig 2. IRNN forecasts for all 4 test seasons (2015/16 to 2018/19) and forecasting horizons (γ = 7, 14, 21, and 28). Confidence intervals (uncertainty estimates) are
shown at 50% and 90% levels, and are visually distinguished by darker and lighter colour overlays respectively. The influenza-like illness (ILI) rate (ground truth) is
shown by the black line.

https://doi.org/10.1371/journal.pcbi.1011392.g002

PLOS COMPUTATIONAL BIOLOGY Influenza forecasting with neural networks associated uncertainty using Web search data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011392 August 28, 2023 6 / 23

models. We provide the same analysis for confirmed cases in the
SI (Supplementary Table 2, and Supplementary Fig. 8), but given
the irregularities in the way laboratory diagnostics were con-
ducted, the time series of deaths is more consistent, and hence
more appropriate to use for this challenging supervised learning
task. We first assess an AR model that uses only deaths data from
the past L= 6 days (AR-F) to conduct forecasts 7 and 14 days
ahead. We then expand on this by incorporating online search
data as well (SAR-F). Both models are based on Gaussian Processes
(GPs) as detailed in Methods. We also use a basic persistence
model (PER-F) as a modest baseline. Our testing period starts from
April 20, 2020, but we commence testing only when a cumulative
number of 10 deaths is recorded in a country (this reduces the
amount of test points for South Africa only). Models are retrained
at every time step, and their accuracy is assessed using the mean
absolute error (MAE) between forecasts and actual figures. Table 1
enumerates these results, including a normalised average MAE
across locations, models, and forecasting tasks to allow for a fairer
joint interpretation. We note that SAR-F performs considerably
better than AR-F, decreasing MAE by 32.65% and 33.77% in the 7
and 14 days ahead forecasting tasks, respectively. It also improves
upon the PER-F baseline in the more challenging task, which is a
positive outcome given the small amount of available training
data. The corresponding 14 days ahead forecasts are depicted in
Supplementary Fig. 9. As expected from the empirical evaluation,

SAR-F estimates are visibly a better fit to the ground truth than the
ones produced by AR-F, capturing the quantity and the overall
trend more convincingly. These outcomes provide further
evidence for the utility of incorporating online search information
in disease models for COVID-19.

DISCUSSION
We have presented unsupervised (with minimised news media
effects) and transfer learning models for COVID-19 based on
online search data. The latter reaffirm the estimates of the former,
albeit with an additional temporal delay of approximately 5 days.
However, transfer learning provides a more statistically principled
approach as it is based on a supervised model of confirmed cases
from a source country (Italy). This is a component that makes it
less prone to media influence, similarly to supervised14,15 or
transferred25 models for ILI. We have conducted a series of
experiments, across different countries, to demonstrate the
practical utility of online search in modelling the incidence of
COVID-19. By comparing our outcomes to clinical endpoints, we
argue that signals from web search data could have served as
preliminary early indicators for COVID-19 prevalence at the
national level. Our results also highlight the immediate impact
that physical distancing or lockdown measures had in reducing
disease rates. Furthermore, a qualitative analysis shows that rarer

Fig. 3 Transfer learning models based on online search data for 7 countries using Italy as the source country. The figures show an
estimated trend for confirmed COVID-19 cases compared to the reported one. The trend is derived by standardising the transferred estimates
(raw values are reflective of the demographics and clinical reporting approach of the source country). The solid line represents the mean
estimate from an ensemble of models. The shaded area shows 95% confidence intervals based on all model estimates. Application dates for
physical distancing or lockdown measures are indicated with dash-dotted vertical lines; for countries that deployed different regional
approaches, the first application of such measures is depicted. Time series are smoothed using a 3-point moving average, centred around
each day. We use this minimum amount of smoothing to remove some of the noise for visualisation purposes and maintain our ability to
compare the transferred models to the corresponding clinical data.

V. Lampos et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021) ���17�

