Statistical Natural Language Processing [COMP0087]

Recurrent Neural Networks

Vasileios Lampos

Computer Science, UCL

- In this lecture:
- brief overview on language models (more on this during the lecture by Dr. OanaMaria Camburu)
- Recurrent Neural Networks
- The Long Short-Term Memory (LSTM) architecture
- Applications and extensions
- slides: lampos.net/teaching
- Reading / Lecture based on: Chapters 3 (less so), 7 (less so), and 9 (more so) of "Speech and Language Processing" (SLP) by Jurafsky and Martin (2023) web.stanford.edu/~jurafsky/sIp3/
- Additional material
* Difficulties in training RNNs - proceedings.mlr.press/v28/pascanu13.pdf
* LSTMs - colah.github.io/posts/2015-08-Understanding-LSTMs/

Language is a sequence of "events" over time

Language model

A language model predicts the next word of a word sequence:

Language model

A language model predicts the next word of a word sequence:
... and all of a sudden Eric Clapton started to play the

Language model

Given a sequence of words $x_{1}, x_{2}, \ldots, x_{t}$
compute the probability of the next word $p\left(x_{t+1} \mid x_{t}, x_{t-1}, \ldots, x_{1}\right)$
where $x_{i} \in \mathscr{V}$ (a word from our vocabulary)

We use language models all the time

(2)
 DuckDuckGo

H. Should I Stay or Should I Go Song by The Clash
Q should i stay or should i go lyrics
should i stay or should i go chords
should i stay or should i go tab
mould I Stay Or Should I Go: Surviving A Relationship with a Narcissist Book by Ramani Durvasula
should i stay or should i go bass tab should i stay or should i go stranger things
Q should i stay or should i go lyrics meaning
Q should i stay or should i go advert
should i stay or should i go gif

Language model evaluation using perplexity (PPL)

$$
\rightarrow \mathrm{PPL}=\prod_{t=1}^{N}\left(\frac{1}{p_{\ell}\left(x_{t+1} \mid x_{t}, \ldots, x_{1}\right)}\right)^{\frac{1}{N} \ldots \ldots . ~} \quad \begin{gathered}
\text { number of tokens } \\
\text { in our corpus }
\end{gathered}
$$

lower is
better
inverse probability of the corpus, according to the language model ℓ

Language model evaluation using perplexity (PPL)

$$
\rightarrow \mathrm{PPL}=\prod^{N}\left(\frac{1}{1(\ldots)}\right)^{\frac{1}{N} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots} \begin{gathered}
\text { number of tokens } \\
\text { in our corpus }
\end{gathered}
$$

lower is
better inverse probability of the corpus, according to the language model ℓ

> Intuition:
> if $\mathrm{PPL}=\delta$, then our uncertainty about the next word is \sim equivalent to the uncertainty of tossing a δ-sided dice and getting a δ

Language model evaluation using perplexity (PPL)

$$
\mathrm{PPL}=\prod_{t=1}^{N}\left(\frac{1}{p_{t}\left(x_{t+1} \mid x_{t}, \ldots, x_{1}\right)}\right)^{\frac{1}{N}+\ldots}
$$

lower is
better
inverse probability of the corpus, according to the language model ℓ

Intuition:
 if PPL $=\delta$, then our uncertainty about the next word is \sim equivalent to the uncertainty of tossing a δ-sided dice and getting a δ

$$
\mathrm{PPL}=\prod_{t=1}^{N}\left(\frac{1}{\hat{\mathbf{y}}_{x_{t+1}}^{[t]}}\right)^{\frac{1}{N}}=\cdots=\exp (L(\theta))
$$

the estimated prob. at word t that the next word is x_{t+1} based on the language model
cross entropy loss of a language model parametrised by θ

Language model evaluation using perplexity (PPL)

Model	PPL
Interpolated Kneser-Ney 5-gram (2013)	67.6
RNN-1024 + MaxEnt 9-gram (2013)	51.3
LSTM-2048 (2016)	43.7
2-layer LSTM-8192 (2016)	30
Adaptive input Transformer (2019)	23.02
GPT-2 (2019)	16.45
But of course, there is a limit on how low perplexity can realistically be!	

[^0]
A foundational neural language model

A foundational neural language model

$$
\begin{aligned}
& \hat{\mathbf{y}}=\operatorname{softmax}\left(\mathbf{Q} \cdot \mathbf{h}+\mathbf{b}_{Q}\right) \in[0,1]^{k} \\
& \mathbf{Q} \in \mathbb{R}^{k \times m} \\
& \mathbf{h}=\sigma\left(\mathbf{W} \cdot \mathbf{u}+\mathbf{b}_{W}\right) \quad \in \mathbb{R}^{m} \\
& \mathbf{W} \in \mathbb{R}^{m \times 4 d} \\
& \mathbf{u}=\left[\mathbf{u}_{1} ; \mathbf{u}_{2} ; \mathbf{u}_{3} ; \mathbf{u}_{4}\right] \in \mathbb{R}^{4 d}
\end{aligned}
$$

Issues!

- context / window size is fixed
- W grows if we increase the window
- word position is modelled explicitly and independently, i.e. there is no weight sharing between words

Recurrent Neural Network (RNN) - Intuition

Recurrency

The current hidden state \mathbf{h}_{t} depends on the previous hidden state \mathbf{h}_{t-1} and influences the next hidden state \mathbf{h}_{t+1}

Recurrent Neural Network (RNN) - Intuition

The RNN unrolls to a theoretically unlimited number of time steps

Recurrency

The current hidden state \mathbf{h}_{t} depends on the previous hidden state \mathbf{h}_{t-1} and influences the next hidden state \mathbf{h}_{t+1}

Recurrent Neural Networks (RNNs)

An RNN-based language model

An RNN-based language model

An RNN-based language model

COMP0087 - Recurrent Neural Networks

An RNN-based language model

initial hidden state

An RNN-based language model

initial hidden state

An RNN-based language model

An RNN-based language model

Hidden states

$$
\begin{aligned}
\mathbf{h}^{[t]}= & \sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \text { or use } \tanh (\cdot)
\end{aligned}
$$

initial hidden state

An RNN-based language model

Output
 $\hat{\mathbf{y}}=\operatorname{softmax}\left(\mathbf{W}_{y} \cdot \mathbf{h}^{[4]}+\mathbf{b}_{y}\right)$

Hidden states

$$
\begin{aligned}
\mathbf{h}^{[t]}= & \sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \text { or use } \tanh (\cdot)
\end{aligned}
$$

initial hidden state

An RNN-based language model

Output
 $\hat{\mathbf{y}}=\operatorname{softmax}\left(\mathbf{W}_{y} \cdot \mathbf{h}^{[4]}+\mathbf{b}_{y}\right)$

Hidden states

$$
\begin{aligned}
\mathbf{h}^{[t]}= & \sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \text { or use } \tanh (\cdot)
\end{aligned}
$$

Dimensionalities?

$\mathbf{u}^{[t]} \in \mathbb{R}^{n}$ embedding of x_{t} from $\mathbf{U} \in \mathbb{R}^{k \times n}$ $\mathbf{h}^{[t]}, \mathbf{b}_{h} \in \mathbb{R}^{m}$

initial hidden state

An RNN-based language model

Output
 $\hat{\mathbf{y}}=\operatorname{softmax}\left(\mathbf{W}_{y} \cdot \mathbf{h}^{[4]}+\mathbf{b}_{y}\right)$

Hidden states

$$
\begin{aligned}
\mathbf{h}^{[t]}= & \sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \text { or use } \tanh (\cdot)
\end{aligned}
$$

Dimensionalities?

$\mathbf{u}^{[t]} \in \mathbb{R}^{n}$ embedding of x_{t} from $\mathbf{U} \in \mathbb{R}^{k \times n}$
$\mathbf{h}^{[t]}, \mathbf{b}_{h} \in \mathbb{R}^{m}$
$\hat{\mathbf{y}}, \mathbf{b}_{y} \in \mathbb{R}^{k}$
$\mathbf{W}_{u} \in \mathbb{R}^{m \times n}, \mathbf{W}_{h} \in \mathbb{R}^{m \times m}$
$\mathbf{W}_{y} \in \mathbb{R}^{k \times m}$

An RNN-based language model

Output
 $\hat{\mathbf{y}}=\operatorname{softmax}\left(\mathbf{W}_{y} \cdot \mathbf{h}^{[4]}+\mathbf{b}_{y}\right)$

Hidden states

$$
\begin{aligned}
\mathbf{h}^{[t]}= & \sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \text { or use } \tanh (\cdot)
\end{aligned}
$$

Dimensionalities?

$\mathbf{u}^{[t]} \in \mathbb{R}^{n}$ embedding of x_{t} from $\mathbf{U} \in \mathbb{R}^{k \times n}$
$\mathbf{h}^{[t]}, \mathbf{b}_{h} \in \mathbb{R}^{m}$
$\hat{\mathbf{y}}, \mathbf{b}_{y} \in \mathbb{R}^{k}$
$\mathbf{W}_{u} \in \mathbb{R}^{m \times n}, \mathbf{W}_{h} \in \mathbb{R}^{m \times m}$
$\mathbf{W}_{y} \in \mathbb{R}^{k \times m}$

An RNN-based language model

Output
 $\hat{\mathbf{y}}=\operatorname{softmax}\left(\mathbf{W}_{y} \cdot \mathbf{h}^{[4]}+\mathbf{b}_{y}\right)$

Hidden states

$$
\begin{aligned}
\mathbf{h}^{[t]}= & \sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \text { or use } \tanh (\cdot)
\end{aligned}
$$

Dimensionalities?

$\mathbf{u}^{[t]} \in \mathbb{R}^{n}$ embedding of x_{t} from $\mathbf{U} \in \mathbb{R}^{k \times n}$
$\mathbf{h}^{[t]}, \mathbf{b}_{h} \in \mathbb{R}^{m}$
$\hat{\mathbf{y}}, \mathbf{b}_{y} \in \mathbb{R}^{k}$
$\mathbf{W}_{u} \in \mathbb{R}^{m \times n}, \mathbf{W}_{h} \in \mathbb{R}^{m \times m}$
$\mathbf{W}_{y} \in \mathbb{R}^{k \times m}$

RNN training

RNN training in practice

- The number of tokens, T, across a large corpus is obviously quite large!

$$
L(\theta)=\frac{1}{T} \sum_{t=1}^{T} L^{[t]}(\theta)
$$

- Computing $L(\theta)$ becomes too computationally expensive...
- Instead we (once again) work with a specified window of text, say a sentence
- We compute $L(\theta)$ for a batch of sentences, then compute the gradient of the loss with respect to the parameters of the network, and then update the parameters.
- We repeat this on a new batch until we eventually pass across the entire corpus.
- And then we go back to the beginning and repeat the entire process (a new training epoch), if necessary.
- The number of tokens, T, across a large corpus is obviously quite large!

how?

- Computing $L(\theta)$ becomes too computationally expensive...
> Instead we (once again) work with a specified window of text, say a sentence
- We compute $L(\theta)$ for a batch of sentences, then compute the gradient of the loss with respect to the parameters of the network, and then update the parameters.
- We repeat this on a new batch until we eventually pass across the entire corpus.
* And then we go back to the beginning and repeat the entire process (a new training epoch), if necessary.

Training the parameters of RNNs

During training, one of the derivatives we need to estimate is: $\frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}$

Training the parameters of RNNs

During training, one of the derivatives we need to estimate is: $\frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}$
This is given by: $\frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\left.\sum_{i=1}^{t} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}\right|_{(i)} \quad \begin{gathered}\text { we are summing up the } \\ \text { gradients at each time step }\end{gathered}$

Training the parameters of RNNs

During training, one of the derivatives we need to estimate is: $\frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}$
This is given by: $\frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\left.\sum_{i=1}^{t} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}\right|_{(i)} \quad \begin{gathered}\text { we are summing up the } \\ \text { gradients at each time step }\end{gathered}$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution (not always possible)

$$
f(x, y)=3 x(t)+y(t)^{2}
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution
(not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2}
\end{aligned}
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution
(not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution
(not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example	trivial solution (not always possible)	multivariate chain rule
$f(x, y)=3 x+y^{2}$	$f(x, y)=3 x(t)+y(t)^{2}$	
$x(t)=t^{2}$	$=3 t^{2}+(t-1)^{2}$	
$y(t)=t-1$	$=4 t^{2}-2 t+1$	
	$\frac{d f}{d t}=8 t-2$	

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example	trivial solution (not always possible)	multivariate chain rule
$\begin{aligned} f(x, y) & =3 x+y^{2} \\ x(t) & =t^{2} \\ y(t) & =t-1 \end{aligned}$	$\begin{aligned} f(x, y) & =3 x(t)+y(t)^{2} \\ & =3 t^{2}+(t-1)^{2} \\ & =4 t^{2}-2 t+1 \end{aligned}$	$\frac{d f}{d t}=$
	$\frac{d f}{d t}=8 t-2$	

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution (not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution (not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution (not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution (not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution (not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

trivial solution (not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

multivariate chain rule

$$
\begin{aligned}
\frac{d f}{d t} & =3 \cdot 2 t+2 y \cdot 1 \\
& =6 t+2(t-1) \\
& =8 t-2
\end{aligned}
$$

Multivariable chain rule

Total derivative of a multivariable function $f(x(t), y(t))$ that depends on two single variable functions $x(t)$ and $y(t)$

$$
\frac{d}{d t} f(x(t), y(t))=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Example

$$
\begin{aligned}
f(x, y) & =3 x+y^{2} \\
x(t) & =t^{2} \\
y(t) & =t-1
\end{aligned}
$$

helpful when a function is unknown!
trivial solution (not always possible)

$$
\begin{aligned}
f(x, y) & =3 x(t)+y(t)^{2} \\
& =3 t^{2}+(t-1)^{2} \\
& =4 t^{2}-2 t+1
\end{aligned}
$$

$$
\frac{d f}{d t}=8 t-2
$$

multivariate chain rule

$$
\begin{aligned}
\frac{d f}{d t} & =3 \cdot 2 t+2 y \cdot 1 \\
& =6 t+2(t-1) \\
& =8 t-2
\end{aligned}
$$

Backpropagation Through Time (BPTT)

Backpropagation Through Time (BPTT)

Backpropagation through time (BPTT)

Backpropagation through time (BPTT)

$$
L(\theta)=\frac{1}{4} \sum_{t=1}^{4} L^{[t]}(\theta)
$$

Backpropagation through time (BPTT)

$$
\begin{aligned}
& L(\theta)=\frac{1}{4} \sum_{t=1}^{4} L^{[t]}(\theta) \\
& \frac{\partial L}{\partial \mathbf{W}_{h}}=\sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}
\end{aligned}
$$

Backpropagation through time (BPTT)

$$
\begin{aligned}
& L(\theta)=\frac{1}{4} \sum_{t=1}^{4} L^{[t]}(\theta) \\
& \frac{\partial L}{\partial \mathbf{W}_{h}}=\sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}} \\
& \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\sum_{k=1}^{t} \frac{\partial L^{[t]}}{\partial \hat{\mathbf{y}}^{[t]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[t]}}{\partial \mathbf{h}^{[t]}} \cdot \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}}
\end{aligned}
$$

Backpropagation through time (BPTT)

$$
\begin{aligned}
L(\theta)= & \frac{1}{4} \sum_{t=1}^{4} L^{[t]}(\theta) \\
\frac{\partial L}{\partial \mathbf{W}_{h}}= & \sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}} \\
\frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}= & \sum_{k=1}^{t} \frac{\partial L^{[t]}}{\partial \hat{\mathbf{y}}^{[t]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[t]}}{\partial \mathbf{h}^{[t]}} \cdot \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}} \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[k]}}=\prod_{j=k+1}^{t} \frac{\partial \mathbf{h}^{[j]}}{\partial \mathbf{h}^{[j-1]}}
\end{aligned}
$$

Backpropagation through time (BPTT)

$$
\begin{aligned}
& L(\theta)=\frac{1}{4} \sum_{t=1}^{4} L^{[t]}(\theta) \\
& \frac{\partial L}{\partial \mathbf{W}_{h}}=\sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}} \\
& \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\sum_{k=1}^{t} \frac{\partial L^{[t]}}{\partial \hat{\mathbf{y}}^{[t]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[t]}}{\partial \mathbf{h}^{[t]}} \cdot \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}} \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[k]}}=\prod_{j=k+1}^{t} \frac{\partial \mathbf{h}^{[j]}}{\partial \mathbf{h}^{[j-1]}} \text { e.g. if } t=4 \text { and } k=1
\end{aligned}
$$

Vanishing (or exploding) gradients

$$
\begin{aligned}
\frac{\partial L}{\partial \mathbf{W}_{h}} & =\sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\frac{\partial L^{[1]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[2]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[3]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} \\
\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} & =\sum_{k=1}^{4} \frac{\partial L^{[4]}}{\partial \hat{\mathbf{y}}^{[4]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[4]}}{\partial \mathbf{h}^{[4]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}} \\
& \propto \frac{\mathbf{l}^{[4]}}{\partial \mathbf{h}^{[1]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[2]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[4]}}
\end{aligned}
$$

Vanishing (or exploding) gradients

$$
\begin{aligned}
\frac{\partial L}{\partial \mathbf{W}_{h}} & =\sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\frac{\partial L^{[1]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[2]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[3]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} \\
\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} & =\sum_{k=1}^{4} \frac{\partial L^{[4]}}{\partial \hat{\mathbf{y}}^{[4]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[4]}}{\partial \mathbf{h}^{[4]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}} \\
& \propto \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[1]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[2]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[4]}}
\end{aligned}
$$

Vanishing (or exploding) gradients

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{W}_{h}}=\sum_{i=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\frac{\partial L^{[1]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[2]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[3]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} \\
& \frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}}=\sum_{k=1}^{4} \frac{\partial L^{[4]}}{\partial \hat{\mathbf{y}}^{[4]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[4]}}{\partial \mathbf{h}^{[4]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { let's focus on this } \\
& \text { component of the sum } \\
& \propto \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[1]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[2]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[4]}} \\
& \propto \sum_{k=1}^{4} \prod_{j=k+1}^{4} \frac{\partial \mathbf{h}^{[j]}}{\partial \mathbf{h}^{[j-1]}} \quad \Longrightarrow \quad \begin{array}{c}
\begin{array}{c}
\text { recall } \\
\frac{\partial h^{[4]}}{\partial h^{[/]}}=\prod_{j=k+1}^{4} \\
\partial \mathbf{h}^{[j-1]}
\end{array} \\
\partial \mathbf{W}_{h}
\end{array} \frac{\partial \mathbf{h}^{[2]}}{\partial \mathbf{h}^{[1]}} \cdot \frac{\partial \mathbf{h}^{[3]}}{\partial \mathbf{h}^{[2]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[3]}}{\partial \mathbf{h}^{[2]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}
\end{aligned}
$$

Vanishing (or exploding) gradients

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{W}_{h}}=\sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\frac{\partial L^{[1]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[2]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[3]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} \\
& \frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}}=\sum_{k=1}^{4} \frac{\partial L^{[4]}}{\partial \hat{\mathbf{y}}^{[4]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[4]}}{\partial \mathbf{h}^{[4]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}} \\
& \mathbf{h}^{[1]}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{array}\right] \\
& \text { let's focus on this } \\
& \text { component of the sum } \\
& \propto \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[1]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[2]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[4]}} \\
& \propto \sum_{k=1}^{4} \prod_{j=k+1}^{4} \frac{\partial \mathbf{h}^{[j]}}{\partial \mathbf{h}^{[j-1]}} \begin{array}{c}
\text { recall } \\
\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{(k]}}=\prod_{j=k+1}^{4} \frac{\partial \mathbf{h}^{[j / j]}}{} \mathbf{h l}^{(j-1)}
\end{array} \\
& \text { what if these are } \\
& \text { small (or large)? } \\
& \Longrightarrow \quad \frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} \propto \frac{\partial \mathbf{h}^{[2]}}{\partial \mathbf{h}^{[1]}} \cdot \frac{\partial \mathbf{h}^{[3]}}{\partial \mathbf{h}^{[2]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[3]}}{\partial \mathbf{h}^{[2]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}
\end{aligned}
$$

Vanishing (or exploding) gradients

$$
\left.\begin{array}{rl}
\frac{\partial L}{\partial \mathbf{W}_{h}} & =\sum_{t=1}^{4} \frac{\partial L^{[t]}}{\partial \mathbf{W}_{h}}=\frac{\partial L^{[1]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[2]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[3]}}{\partial \mathbf{W}_{h}}+\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} \\
\frac{\partial L^{[4]}}{\partial \mathbf{W}_{h}} & =\sum_{k=1}^{4} \frac{\partial L^{[4]}}{\partial \hat{\mathbf{y}}^{[4]}} \cdot \frac{\partial \hat{\mathbf{y}}^{[4]}}{\partial \mathbf{h}^{[4]}} \cdot \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[k]}} \cdot \frac{\partial \mathbf{h}^{[k]}}{\partial \mathbf{W}_{h}} \\
& \propto \frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[1]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[2]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[3]}}+\frac{\partial \mathbf{h}^{[4]}}{\partial \mathbf{h}^{[4]}} \\
\text { lemponent of the sum }
\end{array}\right)
$$

Vanishing (or exploding) gradients - Proof intuition

$$
\mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right)
$$

Vanishing (or exploding) gradients - Proof intuition

$$
\begin{aligned}
& \mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}}=
\end{aligned}
$$

let's ignore the activation function σ

Vanishing (or exploding) gradients - Proof intuition

$$
\begin{aligned}
& \mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}}=\mathbf{W}_{h}
\end{aligned}
$$

Vanishing (or exploding) gradients - Proof intuition

$$
\begin{aligned}
& \mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}}=\mathbf{W}_{h} \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-\xi]}}=\frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}} \cdots \cdots \cdot \frac{\partial \mathbf{h}^{[t-\xi-1]}}{\partial \mathbf{h}^{[t-\xi]}}
\end{aligned}
$$

let's ignore the activation function σ
let's now see what happens when we compute the partial derivative of hidden state $\mathbf{h}^{[t]}$ w.r.t. the hidden state ξ time steps before it, i.e. $\mathbf{h}^{[t-\xi]}$

Vanishing (or exploding) gradients - Proof intuition

$$
\begin{aligned}
& \mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}}=\mathbf{W}_{h} \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-\xi]}}=\frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}} \cdots \cdots \frac{\partial \mathbf{h}^{[t-\xi-1]}}{\partial \mathbf{h}^{[t-\xi]}}=\mathbf{W}_{h}^{\xi} \\
& \xi \text { components }
\end{aligned}
$$

let's ignore the activation function σ
let's now see what happens when we compute the partial derivative of hidden state $\mathbf{h}^{[t]}$ w.r.t. the hidden state ξ time steps before it, i.e. $\mathbf{h}^{[t-\xi]}$

Vanishing (or exploding) gradients - Proof intuition

$$
\begin{aligned}
& \mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}}=\mathbf{W}_{h} \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-\xi]}}=\frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}} \cdots \cdots \cdot \frac{\partial \mathbf{h}^{[t-\xi-1]}}{\partial \mathbf{h}^{[t-\xi]}}=\mathbf{W}_{h}^{\xi} \\
& \xi \text { components }
\end{aligned}
$$

let's ignore the activation function σ

- If \mathbf{W}_{h} has eigenvalues < 1, gradients become exponentially smaller as time steps ξ increase \Longrightarrow gradients will become 0 , i.e. vanish

Vanishing (or exploding) gradients - Proof intuition

$$
\begin{aligned}
& \mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}}=\mathbf{W}_{h} \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-\xi]}}=\frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}} \cdots \cdots \cdot \frac{\partial \mathbf{h}^{[t-\xi-1]}}{\partial \mathbf{h}^{[t-\xi]}}=\mathbf{W}_{h}^{\xi} \\
& \xi \text { components }
\end{aligned}
$$

let's ignore the activation function σ

- If \mathbf{W}_{h} has eigenvalues < 1, gradients become exponentially smaller as time steps ξ increase \Longrightarrow gradients will become 0 , i.e. vanish
- If \mathbf{W}_{h} has eigenvalues $>1 \Longrightarrow$ gradients will explode

Vanishing (or exploding) gradients - Proof intuition

$$
\begin{aligned}
& \mathbf{h}^{[t]}=\sigma\left(\mathbf{W}_{u} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{h} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{h}\right) \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}}=\mathbf{W}_{h} \\
& \frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-\xi]}}=\frac{\partial \mathbf{h}^{[t]}}{\partial \mathbf{h}^{[t-1]}} \cdots \cdots \cdot \frac{\partial \mathbf{h}^{[t-\xi-1]}}{\partial \mathbf{h}^{[t-\xi]}}=\mathbf{W}_{h}^{\xi} \\
& \xi \text { components }
\end{aligned}
$$

let's ignore the activation function σ

- If \mathbf{W}_{h} has eigenvalues < 1, gradients become exponentially smaller as time steps ξ increase \Longrightarrow gradients will become 0 , i.e. vanish
- If \mathbf{W}_{h} has eigenvalues $>1 \Longrightarrow$ gradients will explode
- Similar outcome when we re-introduce an activation function

Vanishing gradients are an issue because...

Vanishing gradients are an issue because...

- Signal (gradient) from early states that are distant to the current state is lost \Longrightarrow long-terms effects are not captured

Vanishing gradients are an issue because...

- Signal (gradient) from early states that are distant to the current state is lost \Longrightarrow long-terms effects are not captured
- NB: Parameters will still be updated, but based on shorter-term gradients that have not vanished.

Exploding gradients

Exploding gradients

- Large gradients, $\frac{\partial L}{\partial \theta_{j}}$, mean large learning steps
during optimisation

$$
\theta_{j+1}=\theta_{j}-\eta \frac{\partial L}{\partial \theta_{j}}
$$

Exploding gradients

- Large gradients, $\frac{\partial L}{\partial \theta_{j}}$, mean large learning steps during optimisation

$$
\theta_{j+1}=\theta_{j}-\eta \frac{\partial L}{\partial \theta_{j}}
$$

- This would possibly result in a poor parameter setting from which we might not be able to recover, especially while using large learning steps

Exploding gradients

- Large gradients, $\frac{\partial L}{\partial \theta_{j}}$, mean large learning steps during optimisation

$$
\theta_{j+1}=\theta_{j}-\eta \frac{\partial L}{\partial \theta_{j}}
$$

- This would possibly result in a poor parameter setting from which we might not be able to recover, especially while using large learning steps
- The worst penalty to pay would be NaN / Inf errors in the NN parameters; training will have to be restarted

An "easy" solution to exploding gradients - Gradient clipping

- If the L2 norm of the gradient is greater than a threshold γ, simply scale the gradient down, i.e. clip it!

$$
\begin{aligned}
& \mathbf{q}=\frac{\partial L}{\partial \theta} \\
& \text { if }\|\mathbf{q}\| \geq \gamma \text { then } \\
& \quad \mathbf{q}=\frac{\gamma}{\|\mathbf{q}\|} \cdot \mathbf{q}
\end{aligned}
$$

endif

- We are still taking a step in the same direction, albeit a smaller one
- We need to learn / set the threshold γ; a good heuristic 0.5 to 10 times the average norm of the gradient over a sufficient number of updates

Long Short-Term Memory (LSTM) - A better RNN

- Simple RNNs fail to maintain information over many time steps as their architecture does not have explicit components to do so
- Long Short-Term Memory (LSTM) is an update to the RNN architecture with the aim of solving the problem of vanishing gradients
- The LSTM has a hidden state like the simple RNN, but also a "cell" state, both being n-dimensional vectors
- The cell is designed to store more long-term information and acts like a memory module - the LSTM can read, delete, and write information to the cell
- 3 new n-dimensional vectors control what is read, deleted, and written; however their decisions are "probabilistic" $\in[0,1]$ for each of the n dimensions (not 0 or 1) and are learned during optimisation

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

[^1]
Long Short-Term Memory (LSTM)

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { New content: similarly to simple RNN, there is an } \\
\text { input sequence } \mathbf{u}^{[1]}, \ldots, \mathbf{u}^{[t]} \text { and there is a } \\
\text { dependency to the previous hidden state } \mathbf{h}^{[t-1]}
\end{array}
\end{array} \quad \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \begin{array}{ll}
\begin{array}{l}
\text { Forget gate: what should be forgotten from the } \\
\text { previous cell state; } 0 \rightarrow 1 \sim \text { forget } \rightarrow \text { keep. }
\end{array} & \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right)
\end{array}
\end{aligned}
$$

Long Short-Term Memory (LSTM)

$$
\begin{aligned}
& \frac{\text { New content: similarly to simple RNN, there is an }}{\text { input sequence } \mathbf{u}^{[1]}, \ldots, \mathbf{u}^{[t]} \text { and there is a }} \quad \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \text {) }
\end{aligned}
$$

Forget gate: what should be forgotten from the previous cell state; $0 \rightarrow 1 \sim$ forget \rightarrow keep.

$$
\mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right)
$$

Input gate: what should be kept from the new
content?

$$
\mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right)
$$

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

all gate values range from 0 to 1 given the sigmoid activation (σ)
$\mathbf{f}^{[t]}, \mathbf{i}^{[t]}, \mathbf{o}^{[t]} \in(0,1)^{n}$
$\tilde{\mathbf{c}}^{[t]}, \mathbf{h}^{[t]} \in(-1,1)^{n}$ and $\mathbf{c}^{[t]} \in \mathbb{R}^{n}$
New content: similarly to simple RNN, there is an input sequence $\mathbf{u}^{[1]}, \ldots, \mathbf{u}^{[t]}$ and there is a

$$
\tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right)
$$

dependency to the previous hidden state $\mathbf{h}^{[t-1]}$

$$
\mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right)
$$

Forget gate: what should be forgotten from the previous cell state; $0 \rightarrow 1 \sim$ forget \rightarrow keep.

$$
\mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right)
$$

Input gate: what should be kept from the new
content?

Cell state: forget some past, keep some present

$$
\mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]}
$$

Output gate: what parts of the cell state will be
passed on to the hidden state
$\mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right)$
Hadamard or product
$\mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)$

Long Short-Term Memory (LSTM)

all gate values range from 0 to 1 given the sigmoid activation (σ)

$$
\mathbf{f}^{[t]}, \mathbf{i}^{[t]}, \mathbf{o}^{[t]} \in(0,1)^{n}
$$

$$
\tilde{\mathbf{c}}^{[t]}, \mathbf{h}^{[t]} \in(-1,1)^{n} \text { and } \mathbf{c}^{[t]} \in \mathbb{R}^{n}
$$

Hadamard or

 productNew content: similarly to simple RNN, there is an input sequence $\mathbf{u}^{[1]}, \ldots, \mathbf{u}^{[t]}$ and there is a dependency to the previous hidden state $\mathbf{h}^{[t-1]}$

Forget gate: what should be forgotten from the previous cell state; $0 \rightarrow 1 \sim$ forget \rightarrow keep.

> Input gate: what should be kept from the new content?

Cell state: forget some past, keep some present

$$
\mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]}
$$

Output gate: what parts of the cell state will be passed on to the hidden state

$$
\mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right)
$$

$$
\begin{gathered}
\tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
\mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right)
\end{gathered}
$$

$$
\mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right)
$$

independent from each other could be computed in parallel

Long Short-Term Memory (LSTM)

all gate values range from 0 to 1 given the sigmoid activation (σ)

$$
\mathbf{f}^{[t]}, \mathbf{i}^{[t]}, \mathbf{o}^{[t]} \in(0,1)^{n}
$$

$$
\tilde{\mathbf{c}}^{[t]}, \mathbf{h}^{[t]} \in(-1,1)^{n} \text { and } \mathbf{c}^{[t]} \in \mathbb{R}^{n}
$$

Hadamard or

 productNew content: similarly to simple RNN, there is an input sequence $\mathbf{u}^{[1]}, \ldots, \mathbf{u}^{[t]}$ and there is a dependency to the previous hidden state $\mathbf{h}^{[t-1]}$

Forget gate: what should be forgotten from the previous cell state; $0 \rightarrow 1 \sim$ forget \rightarrow keep.

$$
\begin{aligned}
& \text { Input gate: what should be kept from the new } \\
& \text { content? }
\end{aligned}
$$

Cell state: forget some past, keep some present
Output gate: what parts of the cell state will be passed on to the hidden state

$$
\mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right)
$$

$$
\begin{gathered}
\tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
\mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right)
\end{gathered}
$$

$$
\mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right)
$$

$$
\mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]}
$$

independent from each other

 could be computed in parallel$\mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)$
If $\mathbf{u}^{[t]} \in \mathbb{R}^{m}$, how many parameters?

Long Short-Term Memory (LSTM)

all gate values range from 0 to 1 given the sigmoid activation (σ)

$$
\mathbf{f}^{[t]}, \mathbf{i}^{[t]}, \mathbf{o}^{[t]} \in(0,1)^{n}
$$

$$
\tilde{\mathbf{c}}^{[t]}, \mathbf{h}^{[t]} \in(-1,1)^{n} \text { and } \mathbf{c}^{[t]} \in \mathbb{R}^{n}
$$

Hadamard or product

New content: similarly to simple RNN, there is an input sequence $\mathbf{u}^{[1]}, \ldots, \mathbf{u}^{[t]}$ and there is a dependency to the previous hidden state $\mathbf{h}^{[t-1]}$

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \mathbf{u}^{t t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right)
\end{aligned}
$$

Forget gate: what should be forgotten from the
previous cell state; $0 \rightarrow 1 \sim$ forget \rightarrow keep.
Input gate: what should be kept from the new content?

$$
\mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right)
$$

Cell state: forget some past, keep some present

$$
\mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]}
$$

\square
Output gate: what parts of the cell state will be passed on to the hidden state

$$
\mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right)
$$

independent from each other could be computed in parallel

$$
\mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
$$

$$
\text { If } \mathbf{u}^{[t]} \in \mathbb{R}^{m}, \text { how many parameters? } \quad=4 \cdot n \cdot(m+n+1)
$$

The LSTM (confusing/artistic) schematic

The LSTM (confusing/artistic) schematic

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right) \\
& \mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right) \\
& \mathbf{c}^{[t]}=\mathbf{f}^{[t]]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]} \\
& \mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right) \\
& \mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
\end{aligned}
$$

The LSTM (confusing/artistic) schematic

forget gate

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right) \\
& \mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right) \\
& \mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]} \\
& \mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right) \\
& \mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
\end{aligned}
$$

The LSTM (confusing/artistic) schematic

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right) \\
& \mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right) \\
& \mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]} \\
& \mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right) \\
& \mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
\end{aligned}
$$

The LSTM (confusing/artistic) schematic

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right) \\
& \mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right) \\
& \mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]} \\
& \mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right) \\
& \mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
\end{aligned}
$$

The LSTM (confusing/artistic) schematic

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right) \\
& \mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right) \\
& \mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]} \\
& \mathbf{o}^{[t]]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right) \\
& \mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
\end{aligned}
$$

The LSTM (confusing/artistic) schematic

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right) \\
& \mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right) \\
& \mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]} \\
& \mathbf{o}^{[t]]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right) \\
& \mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
\end{aligned}
$$

The LSTM (confusing/artistic) schematic

$$
\begin{aligned}
& \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right) \\
& \mathbf{f}^{[t]}=\sigma\left(\mathbf{U}_{f} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{f} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{f}\right) \\
& \mathbf{i}^{[t]}=\sigma\left(\mathbf{U}_{i} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{i} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{i}\right) \\
& \mathbf{c}^{[t]}=\mathbf{f}^{[t]} \odot \mathbf{c}^{[t-1]}+\mathbf{i}^{[t]} \odot \tilde{\mathbf{c}}^{[t]} \\
& \mathbf{o}^{[t]}=\sigma\left(\mathbf{U}_{o} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{o} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{o}\right) \\
& \mathbf{h}^{[t]}=\mathbf{o}^{[t]} \odot \tanh \left(\mathbf{c}^{[t]}\right)
\end{aligned}
$$

The LSTM (confusing/artistic) schematic

LSTM resolves the vanishing gradient issue

- LSTM can preserve information over many time steps using its gates

- LSTM: If the forget gate value is set to $\mathbf{f}_{i}^{[t]}=1$ for a cell dimension i and the corresponding input gate value $\mathbf{i}_{i}^{[t]}=0$, then the cell value from the previous time step, $\mathbf{c}_{i}^{[t-1]}$, is maintained intact
- Simple RNN: much harder to maintain previous state information given at least an entire row of the recurrent matrix \mathbf{W}_{h} should be set to 1 which in turn will invalidate the entire RNN rationale: $\mathbf{h}_{j}^{[t]} \propto \mathbf{W}_{h}[j,:] \cdot \mathbf{h}^{[t-1]}$
- Depends on the task, but say an RNN can model ~10 time steps accurately, then an LSTM can probably capture ~ 100 time steps

Text generation with RNNs

Recipe RNN LM output

Name: Fish and chips with Broccoli and Salad of Creamy Thyme Broth

Ingredients:

- 1 cup frozen peas, thawed
- 1/4 cup chopped fresh cilantro leaves
- 1 tablespoon finely chopped fresh dill
- $1 / 2$ cup sugar
- $1 / 2$ cup corn tortillas
- 1 cup shredded smoked mozzarella or parmesan cheese
- 1/2 cup white wine
- 1 cup chicken broth
- Salt and pepper

Instructions: Season salad with salt and pepper. In a large saute pan over medium-high heat, cook poblano pepper for 1 minute. Add broccoli rabe, spring onions, thyme, and bay leaves and sprinkle with salt and pepper to taste. Cook until vegetables are soft, about 10 minutes. Add the spinach and stir until completely melted. Add sugar and simmer until sauce thickens, about 1 minute. Remove from heat and stir in lemon juice. Serve with steamed roasted garlic bread.

Text generation with RNNs - Trends captured by LSTM cells

Certain LSTM cells "learn" to have larger values...

towards the end of a line

inside if statements

```
The sole importance of the crossing of the berezina lies in the fact
hattidt plainly and indubitably proved the fallacy of all the plans for
log
demanded_-namely, simply to follow the enemy up. The french crowd fled
at a continually,increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and itt was impossible
oblock its path. This was shown not somuch by the arrangements itt
made for crossing as by what took place at the bridges. when the bridges 
who were with the French transport, all--carried on by vis inertiae-.
pressed forward into boats and into the ice-covered water and did not,
surrender.
```


Source: karpathy.github.io/2015/05/21/rnn-effectiveness/

Text generation with RNNs - Trends captured by LSTM cells

Certain LSTM cells "learn" to have larger values...
when the code expression's depth increases
inside comments or double quotes
\#ifdef CONFIG_AUDITSYSCALL

```
static inline int audit_match_class_bits(int class, u32 *mask)
{int i;
    for (classes[class]) { = 0; i < AUDIT_BITMASK_SIZE; i++)
    if (mask[i] & classes[class][i])
    return0;
}
```

3^{r}

Source: karpathy.github.io/2015/05/21/rnn-effectiveness/
e.g. tasks like part-ofspeech (POS) tagging and named entity recognition (NER)

RNN applications - Sentence encoding

e.g. text / sentence, sentiment classification

RNN applications - Encoding units in larger architectures

Bidirectional RNNs

"forward" RNN

"backward" RNN
"forward" RNN

Hidden state via concatenation has context from both directions
"backward" RNN
"forward" RNN

Bidirectional RNNs

Hidden state via concatenation has context from both directions
"backward" RNN
"forward" RNN

Hidden state of the bidirectional RNN
bidirectional arrow convention

Bidirectional RNNs

- Bidirectional RNNs are very effective in sequence classification
- They requires access to the entire sequence, i.e. not necessarily great for language models (text generators)
- Bidirectional NNs are strong predictors, i.e. BERT: Bidirectional Encoder Representations from Transformers
aclanthology.org/N19-1423.pdf
the output of one RNN layer (hidden state) becomes the input to the next

the output of one RNN layer (hidden state) becomes the input to the next

- Monday, March 18 (last week)
- Self-invited "guest" lecture on "Modelling infectious disease prevalence using web search activity"

[^0]: Source 1: engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words Source 2: openreview.net/pdf?id=ByxZX20qFQ
 Source 3: huggingface.co/docs/transformers/perplexity

[^1]: New content: similarly to simple RNN, there is an input sequence $\mathbf{u}^{[1]}, \ldots, \mathbf{u}^{[t]}$ and there is

 $$
 \tilde{\mathbf{c}}^{[t]}=\tanh \left(\mathbf{U}_{c} \cdot \mathbf{u}^{[t]}+\mathbf{W}_{c} \cdot \mathbf{h}^{[t-1]}+\mathbf{b}_{c}\right)
 $$

