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About this lecture

‣ In this lecture: 
— brief overview on language models (more on this during the lecture by Dr. Oana-

Maria Camburu) 
— Recurrent Neural Networks 
— The Long Short-Term Memory (LSTM) architecture 
— Applica$ons and extensions 
— slides: lampos.net/teaching  

‣ Reading / Lecture based on: Chapters 3 (less so), 7 (less so), and 9 (more so) of 
“Speech and Language Processing” (SLP) by Jurafsky and Mar$n (2023) — 
web.stanford.edu/~jurafsky/slp3/ 

‣ Addi$onal material 
✴ Difficul$es in training RNNs — proceedings.mlr.press/v28/pascanu13.pdf  
✴ LSTMs — colah.github.io/posts/2015-08-Understanding-LSTMs/
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https://lampos.net/teaching
https://web.stanford.edu/~jurafsky/slp3/
https://proceedings.mlr.press/v28/pascanu13.pdf
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Text order is important
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≠

+ + + + ++ ++=

Eric Clapton plays the guitar Eric Claptonplaysthe guitar

Language is a sequence of “events” over $me



Language model
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A language model predicts the next word of a word sequence:

… and all of a sudden Eric Clapton started to play the ________

guitar

piano

game

drums

.

?
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A language model predicts the next word of a word sequence:

… and all of a sudden Eric Clapton started to play the ________

guitar

piano

game

drums

.

p(xt+1 |xt, xt−1, …, x1)
Given a sequence of words x1, x2, …, xt

compute the probability of the next word

where xi ∈ 𝒱 (a word from our vocabulary)

Language model

?



We use language models all the $me
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Language model evalua$on using perplexity (PPL)
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PPL =
N

∏
t=1 ( 1

pℓ(xt+1 |xt, …, x1) )
1
N

inverse probability of the corpus, according to the language model ℓ

number of tokens 
in our corpus

lower is  
be7er
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∏
t=1 ( 1

pℓ(xt+1 |xt, …, x1) )
1
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number of tokens 
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if , then our uncertainty about the next word is ~ equivalent to 
the uncertainty of tossing a -sided dice and gedng a  

PPL = δ
δ δ

Intui9on:
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PPL =
N

∏
t=1 ( 1

pℓ(xt+1 |xt, …, x1) )
1
N

inverse probability of the corpus, according to the language model ℓ

number of tokens 
in our corpus

PPL =
N

∏
t=1 ( 1

ŷ[t]
xt+1

)
1
N

the es$mated prob. at word  that the next 
word is  based on the language model

t
xt+1

= ⋯ = exp(L(θ))

see 3.8 in SLP
cross entropy loss of a language 

model parametrised by θ

lower is  
be7er

if , then our uncertainty about the next word is ~ equivalent to 
the uncertainty of tossing a -sided dice and gedng a  

PPL = δ
δ δ

Intui9on:



Language model evalua$on using perplexity (PPL)
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Model PPL

Interpolated Kneser-Ney 5-gram (2013) 67.6

RNN-1024 + MaxEnt 9-gram (2013) 51.3

LSTM-2048 (2016) 43.7

2-layer LSTM-8192 (2016) 30

Adaptive input Transformer (2019) 23.02

GPT-2 (2019) 16.45

Source 1: engineering.g.com/2016/10/25/ml-applica$ons/building-an-efficient-neural-language-model-over-a-billion-words/ 
Source 2: openreview.net/pdf?id=ByxZX20qFQ   
Source 3: huggingface.co/docs/transformers/perplexity 

But of course, there is a limit on how low perplexity can realisNcally be!

https://engineering.fb.com/2016/10/25/ml-applications/building-an-efficient-neural-language-model-over-a-billion-words/
https://openreview.net/pdf?id=ByxZX20qFQ
https://huggingface.co/docs/transformers/perplexity


A founda$onal neural language model
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another brick in the
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Paper: dl.acm.org/doi/pdf/10.5555/944919.944966 

https://dl.acm.org/doi/pdf/10.5555/944919.944966
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x2x1 x3 x4
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another brick in the
x2x1 x3 x4

wordskzo
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w
al

l

bu
ild

in
g

a

h = σ(W ⋅ u + bW) ∈ ℝm

W ∈ ℝm×4d W
u1 u2 u3 u4

h

Q

ŷŷ = softmax(Q ⋅ h + bQ) ∈ [0,1]k

Q ∈ ℝk×m

u = [u1; u2; u3; u4] ∈ ℝ4d

concatenate 
word representa$ons

Paper: dl.acm.org/doi/pdf/10.5555/944919.944966 
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another brick in the
x2x1 x3 x4

wordskzo
o

w
al

l

bu
ild

in
g

a

W
u1 u2 u3 u4

h

Q

ŷ
h = σ(W ⋅ u + bW) ∈ ℝm

W ∈ ℝm×4d

ŷ = softmax(Q ⋅ h + bQ) ∈ [0,1]k

Q ∈ ℝk×m

u = [u1; u2; u3; u4] ∈ ℝ4d

Issues! 
‣ context / window size is fixed 

‣  grows if we increase the 
window 

‣ word posi$on is modelled 
explicitly and independently, i.e. 
there is no weight sharing 
between words

W



Recurrent Neural Network (RNN) — Intui$on
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ht−1

xt ytht

Recurrency  
The current hidden state  depends 
on the previous hidden state  and 
influences the next hidden state 

ht
ht−1

ht+1



Recurrent Neural Network (RNN) — Intui$on

10COMP0087 - Recurrent Neural Networks

ht−1

xt ytht

ht+1xt+1 yt+1

ht+2xt+2 yt+2

Recurrency  
The current hidden state  depends 
on the previous hidden state  and 
influences the next hidden state 

ht
ht−1

ht+1

The RNN unrolls to a theoreNcally 
unlimited number of Nme steps



Recurrent Neural Networks (RNNs)
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h[1] h[2] h[3] h[4]

W WWW

x2 x3x1 x4

ŷ[1] ŷ[4]ŷ[2] ŷ[3] ⋯

⋯

⋯
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of inputs in theory ∞

hidden states 
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i.e. the RNN layer remains 
the same
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core property!
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h[1] h[2] h[3] h[4]

W WWW

x2 x3x1 x4

ŷ[1] ŷ[4]ŷ[2] ŷ[3] ⋯

⋯

⋯

op1onaloutput at each 
$me step

sequence  
of inputs in theory ∞

hidden states 
of the RNN 

i.e. the RNN layer remains 
the same

W

core property!
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in theory 
sequence length 
can be unlimited
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x2x1 x3 x4

iniNal hidden state

in theory 
sequence length 
can be unlimited
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Wu Wu
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x2x1 x3 x4

iniNal hidden state

in theory 
sequence length 
can be unlimited
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Wu WuWuWu
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ŷ = p(x5 |x1, …, x4)
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iniNal hidden state

in theory 
sequence length 
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ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy

Output
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Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]
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x2x1 x3 x4
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Output

ŷ = softmax(Wy ⋅ h[4] + by)
iniNal hidden state
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Wu ∈ℝm×n , Wh ∈ℝm×m
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Wy ∈ℝk×m
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u[t] ∈ℝn embedding of xt from U∈ℝk×n

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)
Hidden states

or use tanh( ⋅ )

in theory 
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How many 
parameters  

does the RNN 
have?

= m ⋅ (n + m + 1)
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n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall … 

RNN training

text sequence / corpus

at each 1me step we 
predict a prob. dist. 
over the en1re corpus 
and determine the most 
probable next word

Loss at each 
1me step

θ = [Wu, Wh, Wy]
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n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall … 

“brick”  −log ̂y[1]( )

=

RNN training

text sequence / corpus

at each 1me step we 
predict a prob. dist. 
over the en1re corpus 
and determine the most 
probable next word

Loss at each 
1me step

θ = [Wu, Wh, Wy]
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m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall … 

“brick”  −log ̂y[1]( ) “in”  −log ̂y[2]( )

= =

RNN training

text sequence / corpus

at each 1me step we 
predict a prob. dist. 
over the en1re corpus 
and determine the most 
probable next word

Loss at each 
1me step

θ = [Wu, Wh, Wy]
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m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall … 

“brick”  −log ̂y[1]( ) “in”  −log ̂y[2]( ) “the”  −log ̂y[3]( )

= = =

RNN training

text sequence / corpus

at each 1me step we 
predict a prob. dist. 
over the en1re corpus 
and determine the most 
probable next word

Loss at each 
1me step

θ = [Wu, Wh, Wy]
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m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall … 

“brick”  −log ̂y[1]( ) “in”  −log ̂y[2]( ) “the”  −log ̂y[3]( ) “Wall”  −log ̂y[4]( )

= = = =

RNN training

text sequence / corpus

at each 1me step we 
predict a prob. dist. 
over the en1re corpus 
and determine the most 
probable next word

Loss at each 
1me step

θ = [Wu, Wh, Wy]
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n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[2] h[3] h[4]

x2x1 x3 x4

Wy

ŷ[1] ŷ[2] ŷ[3] ŷ[4]

Wy Wy Wy

L[1](θ) L[2](θ) L[3](θ) L[4](θ)

Wall … 

“brick”  −log ̂y[1]( ) “in”  −log ̂y[2]( ) “the”  −log ̂y[3]( ) “Wall”  −log ̂y[4]( )

= = = =

RNN training

text sequence / corpus

+ + + + … = L(θ) =
1
T

T

∑
t=1

L[t](θ)

at each 1me step we 
predict a prob. dist. 
over the en1re corpus 
and determine the most 
probable next word

cumula1ve cross-
entropy loss, i.e. the 
mean loss across all 
1me steps

Loss at each 
1me step

θ = [Wu, Wh, Wy]
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RNN training in pracNce

‣ The number of tokens, , across a large corpus is obviously quite large! 

‣ Compu$ng  becomes too computa9onally expensive… 

‣ Instead we (once again) work with a specified window of text, say a sentence 

‣ We compute  for a batch of sentences, then compute the gradient of the 
loss with respect to the parameters of the network, and then update the 
parameters. 

‣ We repeat this on a new batch un$l we eventually pass across the en$re corpus. 

‣ And then we go back to the beginning and repeat the en$re process (a new 
training epoch), if necessary.

T

L(θ)

L(θ)

L(θ) =
1
T

T

∑
t=1

L[t](θ)
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RNN training in pracNce

‣ The number of tokens, , across a large corpus is obviously quite large! 

‣ Compu$ng  becomes too computa9onally expensive… 

‣ Instead we (once again) work with a specified window of text, say a sentence 

‣ We compute  for a batch of sentences, then compute the gradient of the 
loss with respect to the parameters of the network, and then update the 
parameters. 

‣ We repeat this on a new batch un$l we eventually pass across the en$re corpus. 

‣ And then we go back to the beginning and repeat the en$re process (a new 
training epoch), if necessary.

T

L(θ)

L(θ)

L(θ) =
1
T

T

∑
t=1

L[t](θ)
how?



Training the parameters of RNNs
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Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

During training, one of the deriva$ves we need to es$mate is:
∂L[t]

∂Wh
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m m mmm

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

During training, one of the deriva$ves we need to es$mate is:
∂L[t]

∂Wh

∂L[t]

∂Wh
=

t

∑
i=1

∂L[t]

∂Wh (i)
This is given by: we are summing up the 

gradients at each Nme step
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m m mmm

Wu Wu WuWu

Wh WhWh Wh

h[0] h[1] h[t−2] h[t−1] h[t]
Wy

ŷ[t]

Wy Wy Wy

L[t](θ)

⋯
Wh Wh

⋯

During training, one of the deriva$ves we need to es$mate is:
∂L[t]

∂Wh

∂L[t]

∂Wh
=

t

∑
i=1

∂L[t]

∂Wh (i)
This is given by: we are summing up the 

gradients at each Nme step

for each $me step the 
par$al deriva$ve 

depends on different upstream 
variables
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d
dt

f(x(t), y(t)) =
∂f
∂x

⋅
dx
dt

+
∂f
∂y

⋅
dy
dt

Total deriva$ve of a mul$variable func$on 
 that depends on two single 

variable func$ons  and 
f(x(t), y(t))

x(t) y(t)
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helpful when a 
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mul$variate 
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ŷ[4]

Wy

L[4](θ)

Vanishing (or exploding) gradients

⟹
∂L[4]

∂Wh
∝

∂h[2]

∂h[1]
⋅

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[3]

∂h[2]
⋅

∂h[4]

∂h[3]
+

∂h[4]

∂h[3]
∝

4

∑
k=1

4

∏
j=k+1

∂h[ j]

∂h[ j−1]

∂h[4]

∂h[k]
=

4

∏
j=k+1

∂h[ j]

∂h[ j−1]

recall

∝
∂h[4]

∂h[1]
+

∂h[4]

∂h[2]
+

∂h[4]

∂h[3]
+

∂h[4]

∂h[4]

∂L[4]

∂Wh
=

4

∑
k=1

∂L[4]

∂ŷ[4]
⋅
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Vanishing (or exploding) gradients — Proof intui$on

h[t] = σ(Wu ⋅ u[t] + Wh ⋅ h[t−1] + bh)

Paper: proceedings.mlr.press/v28/pascanu13.pdf 
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m m mm

Wh WhWh

h[1] h[t−2] h[t−1] h[t]

ŷ[t]

Wy

L[t](θ)

⋯
Wh

‣ Signal (gradient) from early states that are distant to the current 
state is lost long-terms effects are not captured⟹

‣ NB: Parameters will s$ll be updated, but based on shorter-term 
gradients that have not vanished.

ŷ[t−2]

Wy

L[t−2](θ)
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‣ Large gradients, , mean large learning steps 

during op$misa$on

∂L
∂θj
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‣ Large gradients, , mean large learning steps 

during op$misa$on

∂L
∂θj

‣ This would possibly result in a poor parameter 
sedng from which we might not be able to 
recover, especially while using large learning 
steps
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‣ Large gradients, , mean large learning steps 

during op$misa$on

∂L
∂θj

‣ This would possibly result in a poor parameter 
sedng from which we might not be able to 
recover, especially while using large learning 
steps

‣ The worst penalty to pay would be NaN / Inf 
errors in the NN parameters; training will have 
to be restarted
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An “easy” solu$on to exploding gradients — Gradient clipping
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‣ If the L2 norm of the gradient is greater than a threshold , simply scale the 
gradient down, i.e. clip it! 

‣ We are s$ll taking a step in the same direc$on, albeit a smaller one 

‣ We need to learn / set the threshold ; a good heuris$c  to  $mes the 
average norm of the gradient over a sufficient number of updates

γ

γ 0.5 10

q =
∂L
∂θ

if ∥q∥ ≥ γ then

q =
γ

∥q∥
⋅ q

endif



Long Short-Term Memory (LSTM) — A beuer RNN

30COMP0087 - Recurrent Neural NetworksPaper: bioinf.jku.at/publica$ons/older/2604.pdf

‣ Simple RNNs fail to maintain informa9on over many 9me steps as their 
architecture does not have explicit components to do so 

‣ Long Short-Term Memory (LSTM) is an update to the RNN architecture with the 
aim of solving the problem of vanishing gradients 

‣ The LSTM has a hidden state like the simple RNN, but also a “cell” state, both 
being -dimensional vectors 

‣ The cell is designed to store more long-term informa$on and acts like a memory 
module — the LSTM can read, delete, and write informa$on to the cell 

‣ 3 new -dimensional vectors control what is read, deleted, and wriuen; however 
their decisions are “probabilis$c”  for each of the  dimensions (not  or ) 
and are learned during op$misa$on

n

n
∈ [0,1] n 0 1

σσσ tanh

×

+×

×

h[t]

u[t]

tanh
c[t−1]

h[t−1]

c[t]

h[t]

f[t]
i[t] c̃[t]

o[t]

c[t]

h[t]

https://www.bioinf.jku.at/publications/older/2604.pdf
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c̃[t] = tanh(Uc ⋅ u[t] + Wc ⋅ h[t−1] + bc)
New content: similarly to simple RNN, there is an 
input sequence  and there is a 
dependency to the previous hidden state 
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The LSTM (confusing/arNsNc) schema$c
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σσσ tanh

×

+×

×

h[t]

u[t] u[t+1]u[t−1]

h[t−1] h[t+1]

tanh

More: colah.github.io/posts/2015-08-Understanding-LSTMs/ 

element-wise 
opera$on

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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h[t]‣ LSTM can preserve informa$on over many $me steps using its gates 

‣ LSTM: If the forget gate value is set to  for a cell dimension  and the 
corresponding input gate value , then the cell value from the previous $me 
step, , is maintained intact 

‣ Simple RNN: much harder to maintain previous state informa$on given at least an 
en$re row of the recurrent matrix  should be set to  which in turn will 
invalidate the en$re RNN ra$onale:  

‣ Depends on the task, but say an RNN can model ~10 $me steps accurately, then 
an LSTM can probably capture ~100 $me steps

f[t]
i = 1 i

i[t]i = 0
c[t−1]

i

Wh 1
h[t]

j ∝ Wh[ j, :] ⋅ h[t−1]
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Name: Fish and chips with Broccoli and Salad of Creamy Thyme Broth 

Ingredients: 
• 1 cup frozen peas, thawed 
• 1/4 cup chopped fresh cilantro leaves 
• 1 tablespoon finely chopped fresh dill 
• 1/2 cup sugar 
• 1/2 cup corn tor$llas 
• 1 cup shredded smoked mozzarella or parmesan cheese 
• 1/2 cup white wine 
• 1 cup chicken broth 
• Salt and pepper 

Instruc6ons: Season salad with salt and pepper. In a large saute pan over 
medium-high heat, cook poblano pepper for 1 minute. Add broccoli rabe, 
spring onions, thyme, and bay leaves and sprinkle with salt and pepper to 
taste. Cook unNl vegetables are soZ, about 10 minutes. Add the spinach and 
sNr unNl completely melted. Add sugar and simmer unNl sauce thickens, 
about 1 minute. Remove from heat and sNr in lemon juice. Serve with 
steamed roasted garlic bread.

Input: “Fish and chips”

Recipe RNN LM output
Source: trekhleb.dev/machine-learning-experiments/#/

experiments/RecipeGenera$onRNN 

https://trekhleb.dev/machine-learning-experiments/#/experiments/RecipeGenerationRNN
https://trekhleb.dev/machine-learning-experiments/#/experiments/RecipeGenerationRNN


Text genera$on with RNNs — Trends captured by LSTM cells
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Certain LSTM cells “learn” to have larger values… 

towards the end of a line

inside if statements

Source: karpathy.github.io/2015/05/21/rnn-effec$veness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/


Text genera$on with RNNs — Trends captured by LSTM cells
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Certain LSTM cells “learn” to have larger values… 

when the code expression’s 
depth increases

Source: karpathy.github.io/2015/05/21/rnn-effec$veness/

inside comments or 
double quotes

https://karpathy.github.io/2015/05/21/rnn-effectiveness/


RNN applica$ons — Sequence tagging
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Windows awas great failureMe

e.g. tasks like part-of-
speech (POS) tagging  
and named en9ty 
recogni9on (NER)

noun noun verb determiner adjec9ve noun



RNN applica$ons — Sentence encoding
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e.g. text / sentence, 
senNment classificaNon

Windows awas great failureMe

nega9ve

combine all hidden 
states (element-
wise mean or max)



RNN applica$ons — Encoding units in larger architectures
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Clapton songthe Layla ?writeEricDid

other NN 
units

other NN units

Yes with Jim Gordon, and arguably 
with Rita Coolidge as well.Response:



Bidirec$onal RNNs
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“forward” RNN
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“backward” RNN
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Windows awas great failureMe

“forward” RNN

“backward” RNN

Hidden state 
via concatena$on 
has context from 
both direc$ons
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Windows awas great failureMe

“forward” RNN

“backward” RNN

Hidden state 
via concatena$on 
has context from 
both direc$ons

“great” product vs. “great” failure
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Windows awas great failureMe

“forward” RNN

“backward” RNN

Hidden state 
via concatena$on 
has context from 
both direc$ons

h [t] = RNNF (h [t−1], u[t])

h [t] = RNNB (h [t+1], u[t])

h[t] = [h [t] ; h [t]]

different 
weights

hidden state of the 
bidirec9onal RNN



Bidirec$onal RNNs
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Windows awas great failureMe

Hidden state of the  
bidirecNonal RNN

bidirecNonal arrow convenNon



Bidirec$onal RNNs
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Windows awas great failureMe

‣ Bidirec$onal RNNs are very effec$ve in 
sequence classifica$on 

‣ They requires access to the en$re sequence, 
i.e. not necessarily great for language models 
(text generators) 

‣ Bidirec$onal NNs are strong predictors, i.e. 
BERT: Bidirec$onal Encoder Representa$ons 
from Transformers 
aclanthology.org/N19-1423.pdf 

https://aclanthology.org/N19-1423.pdf


Stacked (mulN-layer) RNNs
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Windows awas great failureMe

the output of one 
RNN layer (hidden 
state) becomes the 
input to the next



lower-level 
features

higher-level 
features

Stacked (mulN-layer) RNNs
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Windows awas great failureMe

the output of one 
RNN layer (hidden 
state) becomes the 
input to the next



Next lecture with me
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‣ Monday, March 18 (last week) 

‣ Self-invited “guest” lecture on “Modelling infecNous disease 
prevalence using web search acNvity”

COMP0087 - Recurrent Neural Networks

probability (on the x-axis), we compute the empirical probability for each of the four test sea-
sons. The diagonal line (y = x) represents perfect calibration, i.e. the expected and empirical
probabilities are the same. Points above the diagonal indicate that the uncertainty estimates
are too large. Conversely, points below it indicate that the uncertainty estimates are too low.
The shadow around the calibration curve shows the variation due to different initialisation
seeds over 10 NN training runs (see Methods for further details). Uncertainties produced by
the IRNN are closer to the diagonal (i.e. better estimates of uncertainty) for horizon windows
greater than 7. Overall, we see that FF is an under-confident model, SRNN an over-confident
model, and IRNN generally more balanced, but the error in confidence increases for the largest
forecast horizon (γ = 28).

Comparison with state-of-the-art

We compare our best model for each forecasting horizon i.e., SRNN for γ = 7 and IRNN for
γ� 14, to a state-of-the-art ILI rate forecasting model, known as ‘Dante’ [21]. Its original
implementation, Dante produces a binned forecast and does not permit comparison based on
CRPS or NLL (see S1 Appendix). Therefore, for this analysis we restrict the performance met-
rics to Skill, MAE, bivariate, and correlation.

To be consistent with prior published literature and conduct a fair comparison, we adopt
exactly the same training setup as proposed in the original paper that proposed Dante [21].
However, we would like to make the reader aware of various caveats in this comparison. First,
Dante’s national US ILI rate forecasts are based on ILI rates from 63 subnational US

Fig 2. IRNN forecasts for all 4 test seasons (2015/16 to 2018/19) and forecasting horizons (γ = 7, 14, 21, and 28). Confidence intervals (uncertainty estimates) are
shown at 50% and 90% levels, and are visually distinguished by darker and lighter colour overlays respectively. The influenza-like illness (ILI) rate (ground truth) is
shown by the black line.

https://doi.org/10.1371/journal.pcbi.1011392.g002

PLOS COMPUTATIONAL BIOLOGY Influenza forecasting with neural networks associated uncertainty using Web search data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011392 August 28, 2023 6 / 23

models. We provide the same analysis for confirmed cases in the
SI (Supplementary Table 2, and Supplementary Fig. 8), but given
the irregularities in the way laboratory diagnostics were con-
ducted, the time series of deaths is more consistent, and hence
more appropriate to use for this challenging supervised learning
task. We first assess an AR model that uses only deaths data from
the past L= 6 days (AR-F) to conduct forecasts 7 and 14 days
ahead. We then expand on this by incorporating online search
data as well (SAR-F). Both models are based on Gaussian Processes
(GPs) as detailed in Methods. We also use a basic persistence
model (PER-F) as a modest baseline. Our testing period starts from
April 20, 2020, but we commence testing only when a cumulative
number of 10 deaths is recorded in a country (this reduces the
amount of test points for South Africa only). Models are retrained
at every time step, and their accuracy is assessed using the mean
absolute error (MAE) between forecasts and actual figures. Table 1
enumerates these results, including a normalised average MAE
across locations, models, and forecasting tasks to allow for a fairer
joint interpretation. We note that SAR-F performs considerably
better than AR-F, decreasing MAE by 32.65% and 33.77% in the 7
and 14 days ahead forecasting tasks, respectively. It also improves
upon the PER-F baseline in the more challenging task, which is a
positive outcome given the small amount of available training
data. The corresponding 14 days ahead forecasts are depicted in
Supplementary Fig. 9. As expected from the empirical evaluation,

SAR-F estimates are visibly a better fit to the ground truth than the
ones produced by AR-F, capturing the quantity and the overall
trend more convincingly. These outcomes provide further
evidence for the utility of incorporating online search information
in disease models for COVID-19.

DISCUSSION
We have presented unsupervised (with minimised news media
effects) and transfer learning models for COVID-19 based on
online search data. The latter reaffirm the estimates of the former,
albeit with an additional temporal delay of approximately 5 days.
However, transfer learning provides a more statistically principled
approach as it is based on a supervised model of confirmed cases
from a source country (Italy). This is a component that makes it
less prone to media influence, similarly to supervised14,15 or
transferred25 models for ILI. We have conducted a series of
experiments, across different countries, to demonstrate the
practical utility of online search in modelling the incidence of
COVID-19. By comparing our outcomes to clinical endpoints, we
argue that signals from web search data could have served as
preliminary early indicators for COVID-19 prevalence at the
national level. Our results also highlight the immediate impact
that physical distancing or lockdown measures had in reducing
disease rates. Furthermore, a qualitative analysis shows that rarer

Fig. 3 Transfer learning models based on online search data for 7 countries using Italy as the source country. The figures show an
estimated trend for confirmed COVID-19 cases compared to the reported one. The trend is derived by standardising the transferred estimates
(raw values are reflective of the demographics and clinical reporting approach of the source country). The solid line represents the mean
estimate from an ensemble of models. The shaded area shows 95% confidence intervals based on all model estimates. Application dates for
physical distancing or lockdown measures are indicated with dash-dotted vertical lines; for countries that deployed different regional
approaches, the first application of such measures is depicted. Time series are smoothed using a 3-point moving average, centred around
each day. We use this minimum amount of smoothing to remove some of the noise for visualisation purposes and maintain our ability to
compare the transferred models to the corresponding clinical data.
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