Statistical Natural Language Processing [COMP0087]

Word embeddings

Vasileios Lampos
Computer Science, UCL

About this lecture

- In this lecture:
- Sparse and dense vector space representations for words
- word2vec with skip-gram (and negative sampling)
- Reading / Lecture based on: Chapter 6 of "Speech and Language Processing" (SLP) by Jurafsky and Martin (2023) - web.stanford.edu/~jurafsky/slp3/
- Clipped slides: lampos.net/teaching
- Additional material
* word2vec - see arxiv.org/abs/1301.3781 and proceedings.neurips.cc/paper/2013/file/ 9aa42b31882ec039965f3c4923ce901b-Paper.pdf
* probabilistic topic models - see youtube.com/watch?v=yK7nN3FcgUs

Word embeddings by counting

- Specify word co-occurrence context window in a corpus
- +/ - 4 words around the target word is a common setting
"Another Brick in the Wall" part 2 is a Pink Floyd song from "The Wall" album that was released as a single in 1979 and while it was banned by at least one authoritarian regime, it managed to sell more than 4 million copies worldwide.

Word embeddings by counting

- Specify word co-occurrence context window in a corpus
- +/ - 4 words around the target word is a common setting
- short context window \rightarrow syntax / grammar aware representation
"Another Brick in the Wall" part 2 is a Pink Floyd song from "The Wall" album that was released as a single in 1979 and while it was banned by at least one authoritarian regime, it managed to sell more than 4 million copies worldwide.

Word embeddings by counting

- Specify word co-occurrence context window in a corpus
- +/ - 4 words around the target word is a common setting
- short context window \rightarrow syntax / grammar aware representation
- long context window \rightarrow more abstraction / meaning / semantics
"Another Brick in the Wall" part 2 is a Pink Floyd song from "The Wall" album that was released as a single in 1979 and while it was banned by at least one authoritarian regime, it managed to sell more than 4 million copies worldwide.

Word embeddings by counting

Word co-occurrence matrix $\quad \mathbf{C} \in \mathbb{N}^{|\mathcal{Y}| x|\mathcal{Y}|}$

Word embeddings by counting

Word co-occurrence matrix $\quad \mathbf{C} \in \mathbb{N}^{|\mathscr{Y}| x|\mathscr{Y}|}$

		\bigcirc	ชิ	\cdots		0°
$\|\mathscr{V}\|$	an	20	50	0		00
		50	10	0		00
		\vdots		\because		!
	200	200	00	0		2

- given a corpus, count the amount of times words co-occur within the specified context windows

Word embeddings by counting

Word co-occurrence matrix $\quad \mathbf{C} \in \mathbb{N}^{|\mathscr{Y}| x|\mathcal{Y}|}$

- given a corpus, count the amount of times words co-occur within the specified context windows
- generates primitive word embeddings

Word embeddings by counting

Word co-occurrence matrix $\quad \mathbf{C} \in \mathbb{N}^{|\mathscr{Y}| x|\mathcal{Y}|}$

- given a corpus, count the amount of times words co-occur within the specified context windows
- generates primitive word embeddings
- sparse representation, sparser for shorter context windows
- high dimensional representation; depends on vocabulary size, $|\mathscr{V}|$

Word embeddings by counting - Pointwise Mutual Information (PMI)

Word co-occurrence matrix $\quad \mathbf{C} \in \mathbb{N}^{|\mathscr{V}| x|\mathscr{Y}|}$

Word co-occurrence matrix
$\mathbf{C} \in \mathbb{N}^{|\mathscr{V}| x|\mathscr{V}|}$
Word context matrix
$\mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}|$

Word co-occurrence matrix
$\mathbf{C} \in \mathbb{N}^{|\mathscr{V}| \times|\mathscr{Y}|}$
Word context matrix
$\mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}|$

- Pointwise Mutual Information (PMI) How often 2 events (in NLP: words!) co-occur compared to our expectation under the assumption that these events were independent

Word co-occurrence matrix
$\mathbf{C} \in \mathbb{N}^{|\mathscr{V}| x|\mathscr{Y}|}$
Word context matrix
$\mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}|$

- Pointwise Mutual Information (PMI) How often 2 events (in NLP: words!) co-occur compared to our expectation under the assumption that these events were independent
- For a target word w_{i} and a context word c_{j}

$$
\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)}
$$

if $\log _{2}$, then the units are bits!

Word embeddings by counting - PPMI

$$
\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)}
$$

Word embeddings by counting - PPMI

$$
\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)}
$$

- PMI identifies strongly associated words even when less frequent
- PMI ranges in $(-\infty,+\infty)$
- $\log (\cdot)$ shrinks the range

Word embeddings by counting - PPMI

$$
\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)}
$$

- PMI identifies strongly associated words even when less frequent
- PMI ranges in $(-\infty,+\infty)$
- $\log (\cdot)$ shrinks the range
- Negative PMI values are harder to interpret and evaluate - "relatedness" is more comprehensive / objective
- Force positivity - Positive PMI (PPMI)

$$
\operatorname{PPMI}\left(w_{i}, c_{j}\right)=\max \left(\operatorname{PMI}\left(w_{i}, c_{j}\right), 0\right)
$$

Word embeddings by counting - PPMI

Word context matrix
 $\mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}|$

$\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)}$
$\operatorname{PPMI}\left(w_{i}, c_{j}\right)=\max \left(\operatorname{PMI}\left(w_{i}, c_{j}\right), 0\right)$

Word embeddings by counting - PPMI

$$
\begin{gathered}
\text { Word context matrix } \quad \mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}| \\
\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)} \quad \operatorname{PPMI}\left(w_{i}, c_{j}\right)=\max \left(\operatorname{PMI}\left(w_{i}, c_{j}\right), 0\right) \\
p\left(w_{i}, c_{j}\right)=\frac{q_{i j}}{\sum_{i=1}^{|\mathscr{V}|} \sum_{j=1}^{d} q_{i j}} \quad \begin{array}{l}
\text { number of times } w_{i} \text { co-occurs with } c_{j} \\
\text { divided by the total word count in } \mathbf{Q}
\end{array}
\end{gathered}
$$

$$
\mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}|
$$

Word embeddings by counting - PPMI

Word context matrix

$$
\mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}|
$$

$$
\begin{aligned}
\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)} & \operatorname{PPMI}\left(w_{i}, c_{j}\right)=\max \left(\operatorname{PMI}\left(w_{i}, c_{j}\right), 0\right) \\
p\left(w_{i}, c_{j}\right) & =\frac{q_{i j}}{\sum_{i=1}^{|\mathscr{V}|} \sum_{j=1}^{d} q_{i j}} \quad
\end{aligned} \quad \begin{aligned}
& \text { number of times } w_{i} \text { co-occurs with } c_{j} \\
& \text { divided by the total word count in } \mathbf{Q}
\end{aligned}
$$

sum of i-th
row of \mathbf{Q}

$$
p\left(w_{i}\right)=\frac{\sum_{j=1}^{d} q_{i j}}{\sum_{i=1}^{|\mathscr{V}|} \sum_{j=1}^{d} q_{i j}}
$$

Word embeddings by counting - PPMI

Word context matrix
 $$
\mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}|
$$

$$
\begin{array}{rc}
\operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)} & \operatorname{PPMI}\left(w_{i}, c_{j}\right)=\max \left(\operatorname{PMI}\left(w_{i}, c_{j}\right), 0\right) \\
p\left(w_{i}, c_{j}\right)=\frac{q_{i j}}{\sum_{i=1}^{|\mathscr{V}|} \sum_{j=1}^{d} q_{i j}} \quad \begin{array}{l}
\text { number of times } w_{i} \text { co-occurs with } c_{j} \\
\text { divided by the total word count in } \mathbf{Q}
\end{array}
\end{array}
$$

sum of i-th
row of \mathbf{Q}

$$
p\left(w_{i}\right)=\frac{\sum_{j=1}^{d} q_{i j}}{\sum_{i=1}^{\mid\langle |} \sum_{j=1}^{d} q_{i j}}
$$

sum of j-th
column of \mathbf{Q}

Word embeddings by counting - PPMI

$$
\begin{aligned}
& \text { Word context matrix } \\
& \mathbf{Q} \in \mathbb{N}^{|\mathscr{V}| \times d}, d<|\mathscr{V}| \\
& \operatorname{PMI}\left(w_{i}, c_{j}\right)=\log \frac{p\left(w_{i}, c_{j}\right)}{p\left(w_{i}\right) \cdot p\left(c_{j}\right)} \\
& p\left(w_{i}, c_{j}\right)=\frac{q_{i j}}{\sum_{i=1}^{|\mathscr{V}|} \sum_{j=1}^{d} q_{i j}} \\
& \text { number of times } w_{i} \text { co-occurs with } c_{j} \\
& \text { divided by the total word count in } \mathbf{Q} \\
& p\left(w_{i}\right)=\frac{\sum_{j=1}^{d} q_{i j}}{\sum_{i=1}^{|\mathscr{V}|} \sum_{j=1}^{d} q_{i j}} \\
& p\left(c_{j}\right)=\frac{\sum_{i=1}^{|\mathscr{V}|} q_{i j}}{\sum_{i=1}^{|\mathscr{V}|} \sum_{j=1}^{d} q_{i j}}
\end{aligned}
$$

row of \mathbf{Q}

Word embeddings by matrix factorisation - SVD to PPMI

Word embeddings by matrix factorisation - SVD to PPMI

- $\mathbf{u}_{i}: k$-dimensional vector that represents word i in our vocabulary
- dense word embedding
- commonly, $k=128$ to 1024 , i.e. \mathbf{u}_{i} is short and dense
- matrices Σ and \mathbf{V} are (or could be) thrown away

Word embeddings by matrix factorisation - SVD to PPMI

- $\mathbf{u}_{i}: k$-dimensional vector that represents word i in our vocabulary
- dense word embedding
- commonly, $k=128$ to 1024 , i.e. \mathbf{u}_{i} is short and dense
- matrices Σ and \mathbf{V} are (or could be) thrown away

Word embeddings by matrix factorisation - SVD to PPMI

- $\mathbf{u}_{i}: k$-dimensional vector that represents word i in our vocabulary - dense word embedding
- commonly, $k=128$ to 1024 , i.e. \mathbf{u}_{i} is short and dense
- matrices Σ and \mathbf{V} are (or could be) thrown away

Word embeddings by matrix factorisation - SVD to PPMI

- $\mathbf{u}_{i}: k$-dimensional vector that represents word i in our vocabulary
- dense word embedding
- commonly, $k=128$ to 1024 , i.e. \mathbf{u}_{i} is short and dense
- matrices Σ and \mathbf{V} are (or could be) thrown away
- Downsides: SVD has a significant computational cost, $\mathcal{O}\left(|\mathscr{V}| \cdot d \cdot k^{2}\right)$ No intuition - what do the SVD embeddings represent?

Word embeddings by matrix factorisation - SVD to PPMI

- Interesting to know: A variant of word2vec (skip-gram with negative sampling that will see next) is implicitly factorising a word-context matrix, whose cells are the pointwise mutual information (PMI) of the respective word and context pairs, shifted by a global constant
- More in papers.nips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf
... said that "Hey Jude" is Beatles' most famous song, but...
... said that "Hey Jude" is Beatles' most famous song, but...

Word embeddings by prediction

... said that "Hey Jude" is Beatles' most famous song, but...

Word embeddings by prediction

context words

$$
\mathbf{c}=\left[\begin{array}{llllll}
w_{t-3} & w_{t-2} & w_{t-1} & w_{t+1} & w_{t+2} & w_{t+3}
\end{array}\right]
$$ said that "Hey Jude" is Beatles' most famous song, but...

Word embeddings by prediction

context words
$\mathbf{c}=\left[\begin{array}{llllll}w_{t-3} & w_{t-2} & w_{t-1} & w_{t+1} & w_{t+2} & w_{t+3}\end{array}\right]$
... said that "Hey Jude" is Beatles' most famous song, but...

Prediction tasks

$$
\begin{gathered}
p\left(\mathbf{c} \mid w_{t}\right)=? \\
\text { or } \\
p\left(w_{t} \mid \mathbf{c}\right)=?
\end{gathered}
$$

Word embeddings by prediction

context words
$\mathbf{c}=\left[\begin{array}{llllll}w_{t-3} & w_{t-2} & w_{t-1} & w_{t+1} & w_{t+2} & w_{t+3}\end{array}\right]$
... said that "Hey Jude" is Beatles' most famous song, but...

Prediction tasks

context radius

$$
L=3
$$

word2vec - Continuous Bag of Words (CBOW)

Text window: [Hey, Jude, is, Beatles, most, famous, song]

word2vec - Continuous Bag of Words (CBOW)

What do n and d denote?

Text window: [Hey, Jude, is, Beatles, most, famous, song]

word2vec - Continuous Bag of Words (CBOW)

What do n and d denote? Why do we use the softmax at the very end?

Text window: [Hey, Jude, is, Beatles, most, famous, song]

word2vec - skip-gram

Text window: [Hey, Jude, is, Beatles, most, famous, song]
context words $\left.\begin{array}{lllllll}w_{t-3} & w_{t-2} & w_{t-1} & w_{t+1} & w_{t+2} & w_{t+3}\end{array}\right]$
... said that "Hey Jude" is Beatles' most famous song, but...

context word $i \rightarrow \mathbf{c}_{i} \in \mathbb{R}^{d}$	$\mathbf{C} \in \mathbb{R}^{n \times d}$	context word embeddings
target word $j \rightarrow \mathbf{u}_{j} \in \mathbb{R}^{d}$	$\mathbf{U} \in \mathbb{R}^{d \times n}$	target word embeddings

word2vec - skip-gram

Imagine our corpus is a sequence of T tokens

$$
w_{1}, w_{2}, \ldots, w_{T}
$$

Imagine our corpus is a sequence of T tokens

$$
w_{1}, w_{2}, \ldots, w_{T}
$$

Imagine our corpus is a sequence of T tokens

$$
w_{1}, w_{2}, \ldots, w_{T}
$$

if our context radius $L=2$ and our target word is w_{t}

Imagine our corpus is a sequence of T tokens

$$
w_{1}, w_{2}, \ldots, w_{T}
$$

if our context radius $L=2$ and our target word is w_{t}
skip-gram aims to maximise this

$$
p\left(w_{t-2} \mid w_{t}\right) \cdot p\left(w_{t-1} \mid w_{t}\right) \cdot p\left(w_{t+1} \mid w_{t}\right) \cdot p\left(w_{t+2} \mid w_{t}\right)
$$

Imagine our corpus is a sequence of T tokens

$$
w_{1}, w_{2}, \ldots, w_{T}
$$

if our context radius $L=2$ and our target word is w_{t}

$$
\begin{array}{ll}
\begin{array}{c}
\text { words are } \\
\text { independent }
\end{array} & \text { skip-gram aims to maximise this } \\
\text { from each other }
\end{array} \cdots p\left(w_{t-2} \mid w_{t}\right) \cdot p\left(w_{t-1} \mid w_{t}\right) \cdot p\left(w_{t+1} \mid w_{t}\right) \cdot p\left(w_{t+2} \mid w_{t}\right) .
$$

Imagine our corpus is a sequence of T tokens

$$
w_{1}, w_{2}, \ldots, w_{T}
$$

if our context radius $L=2$ and our target word is w_{t}

$$
\begin{aligned}
& \text { words are } \\
& \text { skip-gram aims to maximise this } \\
& \text { independent } \\
& \text { from each other }=-=-=-\Rightarrow p\left(w_{t-2} \mid w_{t}\right) \cdot p\left(w_{t-1} \mid w_{t}\right) \cdot p\left(w_{t+1} \mid w_{t}\right) \cdot p\left(w_{t+2} \mid w_{t}\right) \quad \begin{array}{c}
\text { Does it matter if a } \\
\text { word comes before } \\
\text { or after } w_{t} ?
\end{array}
\end{aligned}
$$

Imagine our corpus is a sequence of T tokens

$$
w_{1}, w_{2}, \ldots, w_{T}
$$

if our context radius $L=2$ and our target word is w_{t}

$$
\begin{aligned}
& \begin{array}{c}
\text { words are } \\
\text { independent } \\
\text { from each other } \cdots \cdots
\end{array} \quad \text { skip-gram aims to maximise this }
\end{aligned}
$$

Does it matter if a word comes before or after w_{t} ?

$$
=\prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)
$$

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$
for one context window $\max \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$
for one context window $\max \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
across the entire corpus

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$
for one context window $\max \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
across the entire corpus $\quad \max \frac{1}{T} \prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
for one context window $\max \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
across the entire corpus $\quad \max \frac{1}{T} \prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
let's work with the log why?
for one context window $\max \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
across the entire corpus $\quad \max \frac{1}{T} \prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
let's work with the log why?

$$
\max \frac{1}{T} \log \left(\prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)\right)
$$

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$
for one context window $\max \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
across the entire corpus $\quad \max \frac{1}{T} \prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)$
let's work with the log why?

$$
\max \frac{1}{T} \log \left(\prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)\right)=\max \frac{1}{T} \sum_{i=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)
$$

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$
let's work with the $\log \quad \max \frac{1}{T} \log \left(\prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)\right)=\max \frac{1}{T} \sum_{i=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)$

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$
let's work with the log $\max \frac{1}{T} \log \left(\prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)\right)=\max \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)$
minimise this $\quad \min -\frac{1}{T} \sum_{i=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)$

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$
let's work with the $\log \quad \max \frac{1}{T} \log \left(\prod_{t=1}^{T} \prod_{i=-L, i \neq 0}^{L} p\left(w_{t-i} \mid w_{t}\right)\right)=\max \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)$
minimise this $\quad \min -\frac{1}{T} \sum_{i=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)$

- What are we minimising this against? Parameters of the model?
- How do we learn word embeddings from this?

word2vec - skip-gram

Imagine our corpus is a sequence of T tokens $\quad w_{1}, w_{2}, \ldots, w_{T}$

$$
\min -\frac{1}{T} \sum_{i=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)
$$

word2vec - skip-gram

$p\left(w_{t-i} \mid w_{t}\right)$
context word target word

Context word w_{t-i} is vocabulary word $c \in \mathscr{V}$
that has an embedding $\quad \mathbf{c} \in \mathbb{R}^{1 \times d}$ assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

Context word w_{t-i} is vocabulary word $c \in \mathscr{V}$ that has an embedding assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

Target word w_{t} is
$u \in \mathscr{V}$
with an embedding
assuming embedding matrix $\mathbf{U} \in \mathbb{R}^{d \times n}$

Context word w_{t-i} is vocabulary word $c \in \mathscr{V}$ that has an embedding $\quad \mathbf{c} \in \mathbb{R}^{1 \times d}$ assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

$$
\operatorname{sim}\left(w_{t-1}, w_{t}\right)=\operatorname{sim}(c, u)=\mathbf{c} \cdot \mathbf{u}
$$

dot product!

Context word w_{t-i} is vocabulary word $c \in \mathscr{V}$ that has an embedding $\quad \mathbf{c} \in \mathbb{R}^{1 \times d}$ assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

Target word w_{t} is
$u \in \mathscr{V}$
with an embedding
assuming embedding matrix $\mathbf{U} \in \mathbb{R}^{d \times n}$

$$
\operatorname{sim}\left(w_{t-1}, w_{t}\right)=\operatorname{sim}(c, u)=\mathbf{c} \cdot \mathbf{u}
$$

$$
p(c \mid u)=\frac{\exp (\mathbf{c} \cdot \mathbf{u})}{\sum_{\mathbf{c}_{k} \in \mathbf{C}} \exp \left(\mathbf{c}_{k} \cdot \mathbf{u}\right)}
$$

normalise using softmax

Context word w_{t-i} is vocabulary word $c \in \mathscr{V}$ that has an embedding $\quad \mathbf{c} \in \mathbb{R}^{1 \times d}$ assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

$$
\operatorname{sim}\left(w_{t-1}, w_{t}\right)=\operatorname{sim}(c, u)=\mathbf{c} \cdot \mathbf{u}
$$

dot product!

```
Is it expensive to denominator of this?
```

$$
p(c \mid u)=\frac{\exp (\mathbf{c} \cdot \mathbf{u})}{\sum_{\mathbf{c}_{k} \in \mathbf{C}} \exp \left(\mathbf{c}_{k} \cdot \mathbf{u}\right)}
$$

normalise using softmax

word2vec - skip-gram

Imagine our corpus is a sequence of T tokens

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{T} \\
\min -\frac{1}{T} \sum_{i=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)
\end{gathered}
$$

Hey
Jude
is
most
famous
song

word2vec - skip-gram

Imagine our corpus is a sequence of T tokens

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{T} \\
\min -\frac{1}{T} \sum_{i=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)
\end{gathered}
$$

is
most
famous
song previous information

word2vec - skip-gram

Imagine our corpus is a sequence of T tokens

$$
\mathcal{W}_{1}, \mathcal{W}_{2}, \ldots, \mathcal{W}_{T}
$$

$$
\min -\frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)
$$

Hey Jude is
most
famous
song
let's insert the previous information

Opt. task: $\arg \min _{\mathbf{C}, \mathbf{U}}-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(\frac{\exp \left(\mathbf{c}_{w_{t-i}} \cdot \mathbf{u}_{w_{t}}\right)}{\sum_{j=1}^{n} \exp \left(\mathbf{c}_{j} \cdot \mathbf{u}_{w_{t}}\right)}\right)$ matrices

word2vec - skip-gram

Imagine our corpus is a sequence of T tokens

$$
\begin{gathered}
w_{1}, w_{2}, \ldots, w_{T} \\
\min -\frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p\left(w_{t-i} \mid w_{t}\right)\right)
\end{gathered}
$$

is
most
famous
song
let's insert the previous information

Opt. task: $\arg \min _{\mathbf{C}, \mathbf{U}}-\frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(\frac{\exp \left(\mathbf{c}_{w_{t-i}} \cdot \mathbf{u}_{w_{t}}\right)}{\sum_{j=1}^{n} \exp \left(\mathbf{c}_{j} \cdot \mathbf{u}_{w_{t}}\right)}\right)$ matrices
ranks all words in the vocabulary in terms of their probability of being within the context window

too expensive!!!

Solution: Let's change the objective function by using "negative sampling"!
Given a target word u and another word v
model the probability of u and v appearing in the same context
\Longrightarrow binary classification

Solution: Let's change the objective function by using "negative sampling"!

Given a target word u and another word v
model the probability of u and v appearing in the same context
\Longrightarrow binary classification
they appear
in the same context

$$
p(D=1 \mid v, u)=\sigma(\mathbf{v} \cdot \mathbf{u})=\frac{1}{1+\exp (-\mathbf{v} \cdot \mathbf{u})}
$$

Solution: Let's change the objective function by using "negative sampling"!
Given a target word u and another word v
model the probability of u and v appearing in the same context
\Longrightarrow binary classification
they appear
in the same context

$$
p(D=1 \mid v, u)=\sigma(\mathbf{v} \cdot \mathbf{u})=\frac{1}{1+\exp (-\mathbf{v} \cdot \mathbf{u})}
$$

they don't appear in the same context

$$
-p(D=0 \mid v, u)=1-p(D=1 \mid v, u)=1-\sigma(\mathbf{v} \cdot \mathbf{u})=\sigma(-\mathbf{v} \cdot \mathbf{u})
$$

Now, if u is our target word and c a context word we want to maximise

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \prod_{\{c, u\} \in \mathscr{D}} p(D=1 \mid c, u)
$$

where \mathscr{D} holds all target-context word pairs in our corpus

Now, if u is our target word and c a context word we want to maximise

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \prod_{\{c, u\} \in \mathscr{D}} p(D=1 \mid c, u)
$$

where \mathscr{D} holds all target-context word pairs in our corpus

```
arg max }\mp@subsup{\prod}{\mathbf{C},\mathbf{U}}{\mp@subsup{\prod}{{c,u}\in\mathscr{D}}{}}\sigma(\mathbf{c}\cdot\mathbf{u}
```

Now, if u is our target word and c a context word we want to maximise

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \prod_{\{c, u\} \in \mathscr{D}} p(D=1 \mid c, u)
$$

where \mathscr{D} holds all target-context word pairs in our corpus

Now, if u is our target word and c a context word we want to maximise

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \prod_{\{c, u\} \in \mathscr{D}} p(D=1 \mid c, u)
$$

where \mathscr{D} holds all target-context word pairs in our corpus

u is our target word and c a context word

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))
$$

u is our target word and c a context word

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))
$$

but an undesirable setting that maximises this function is...
u is our target word and c a context word

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))
$$

but an undesirable setting that maximises this function is...

$$
\mathbf{c}=\mathbf{u}^{\top} \text { and } \mathbf{c} \cdot \mathbf{u}=k, \text { where } k \geq 40
$$

u is our target word and c a context word

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))
$$

but an undesirable setting that maximises this function is...

$$
\begin{aligned}
& \mathbf{c}=\mathbf{u}^{\top} \text { and } \mathbf{c} \cdot \mathbf{u}=k \text {, where } k \geq 40 \\
& \Longrightarrow \sigma(\mathbf{c} \cdot \mathbf{u})=\sigma(40) \approx 1 \quad \text { logistic sigmoid's max value }
\end{aligned}
$$

u is our target word and c a context word

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))
$$

Fix: generate random pairs ((D) and consider them as "negative" target-context pairs

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{\{c, u\} \in \mathscr{D}^{\prime}} \log (\sigma(-\mathbf{c} \cdot \mathbf{u}))
$$

u is our target word and c a context word

$$
\arg \max _{\mathbf{C}, \mathbf{U}} \sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))
$$

Fix: generate random pairs ($(\mathscr{})$ and consider them as "negative" target-context pairs
minimise this! $\quad \arg \min _{\mathbf{C}, \mathbf{U}}-\left[\sum_{\{c, u\} \in \mathscr{D}} \log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{\{c, u\} \in \mathscr{D}^{\prime}} \log (\sigma(-\mathbf{c} \cdot \mathbf{u}))\right]$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

Logistic cross-entropy loss $\quad L_{\mathrm{Ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right]$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

Logistic cross-entropy loss $\quad L_{\mathrm{Ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right]$
$k+1$
context word embeddings

$$
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}=?
$$

$$
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{h}_{i}}=?
$$

target word embedding

$$
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{u}}=?
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right]
$$

$$
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}=
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
\begin{aligned}
& L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{\left.k \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right]}\right. \\
& \frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}=
\end{aligned}
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
\begin{aligned}
L_{\mathrm{Ce}} & =-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right] \\
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}} & =\frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})}
\end{aligned}
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly
reminder
$\frac{d \sigma(x)}{d x}=\sigma(x) \cdot(1-\sigma(x))$
$\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}=\frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})} \cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot(1-\sigma(\mathbf{c} \cdot \mathbf{u}))$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly
reminder
$\frac{d \sigma(x)}{d x}=\sigma(x) \cdot(1-\sigma(x))$
$\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}=\frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})} \cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot(1-\sigma(\mathbf{c} \cdot \mathbf{u})) \cdot \mathbf{u}$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly
reminder

$$
L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{\mathrm{k}_{1}} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right]
$$

$$
\frac{d \sigma(x)}{d x}=\sigma(x) \cdot(1-\sigma(x))
$$

$$
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}=-\frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})} \cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot(1-\sigma(\mathbf{c} \cdot \mathbf{u})) \cdot \mathbf{u}
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly
reminder

$$
L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{\sum_{i} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)} \begin{array}{r}
\ddots \ddots \cdot
\end{array}\right]
$$

$$
\frac{d \sigma(x)}{d x}=\sigma(x) \cdot(1-\sigma(x))
$$

$$
\begin{aligned}
& \frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}
\end{aligned}=-\frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})} \cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot(1-\sigma(\mathbf{c} \cdot \mathbf{u})) \cdot \mathbf{u}, \text { chain rule...! }
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right]
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
\begin{gathered}
L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right] \\
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{h}_{i}}=?
\end{gathered}
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
\begin{gathered}
L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right] \\
\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{h}_{i}}=?=\sigma\left(\mathbf{h}_{i} \cdot \mathbf{u}\right) \cdot \mathbf{u}
\end{gathered}
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
\begin{aligned}
& L_{\mathrm{Ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right] \\
& \frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{h}_{i}}=?=\sigma\left(\mathbf{h}_{i} \cdot \mathbf{u}\right) \cdot \mathbf{u} \\
& \frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{u}}=(\sigma(\mathbf{c} \cdot \mathbf{u})-1) \mathbf{c}+\sum_{i=1}^{k}\left(\sigma\left(\mathbf{h}_{i} \cdot \mathbf{u}\right) \cdot \mathbf{h}_{i}\right)
\end{aligned}
$$

Suppose we have a target word u, a valid context word c, and k noise words $h_{i}, i \in\{1, \ldots, k\}$ (negative samples) chosen randomly

$$
L_{\mathrm{ce}}=-\left[\log (\sigma(\mathbf{c} \cdot \mathbf{u}))+\sum_{i=1}^{k} \log \left(\sigma\left(-\mathbf{h}_{i} \cdot \mathbf{u}\right)\right)\right]
$$

rows of the context

$$
\mathbf{c}_{t+1}=\mathbf{c}_{t}-\alpha\left(\frac{\partial L_{\mathrm{ce}}}{\partial \mathbf{c}}\right)_{t}=\mathbf{c}_{t}-\alpha\left(\sigma\left(\mathbf{c}_{t} \cdot \mathbf{u}_{t}\right)-1\right) \cdot \mathbf{u}_{t}
$$ embedding matrix \mathbf{C}

$$
\mathbf{h}_{i, t+1}=\mathbf{h}_{i, t}-\alpha \sigma\left(\mathbf{h}_{i, t} \cdot \mathbf{u}_{t}\right) \mathbf{u}_{t}
$$

$$
\mathbf{u}_{t+1}=\mathbf{u}_{t}-\alpha\left[\left(\sigma\left(\mathbf{c}_{t} \cdot \mathbf{u}_{t}\right)-1\right) \mathbf{c}_{t}+\sum_{i=1}^{k}\left(\sigma\left(\mathbf{h}_{i ; t} \cdot \mathbf{u}_{t}\right) \cdot \mathbf{h}_{i ; t}\right)\right]
$$

word2vec 2D projections

word2vec 2D projections

Word analogies: The infamous "king - man + woman \approx queen"

NB

Word embeddings tend to carry the biases or stereotypes of the corpora used to train them!
vector('queen') \approx vector('king') $-\operatorname{vector}($ 'man') + vector('woman')

Word analogies: The infamous "king - man + woman \approx queen"

$$
\begin{array}{ccc}
b & a & a_{p}
\end{array} \quad b_{p}
$$

Word analogies: The infamous "king - man + woman \approx queen"

Compute cosine similarity between the composite embedding $\left(\mathbf{u}_{a}-\mathbf{u}_{a_{p}}+\mathbf{u}_{b_{p}}\right)$ and each other word embedding in our vocabulary; expect that $\mathbf{u}_{b}=$ vector('queen') will have the greatest one.

Word analogies: The infamous "king - man + woman \approx queen"

Compute cosine similarity between the composite embedding $\left(\mathbf{u}_{a}-\mathbf{u}_{a_{p}}+\mathbf{u}_{b_{p}}\right)$ and each other word embedding in our vocabulary; expect that $\mathbf{u}_{b}=$ vector('queen') will have the greatest one.

This gives rise to the word analogy
a_{p} is for a, what b_{p} is for b
or 'man' is for 'king', what 'woman' is for 'queen'

Word analogies: The infamous "king - man + woman \approx queen"

This gives rise to the word analogy
a_{p} is for a, what b_{p} is for b
or 'man' is for 'king', what 'woman' is for 'queen'

Twitter word embeddings - Similarities

Top- 5 most similar words using cosine similarity on word embeddings

- Monday: Tuesday, Thursday, Wednesday, Friday, Sunday
- January: February, August, October, March, June
- red: yellow, blue, purple, pink, green
- we: they, you, we've, our, us
- espresso: expresso, cappuccino, macchiato, latte, coffee
- linux: Unix, Centos, Debian, Ubuntu, Redhat
- democracy: democratic, dictatorship, democracies, socialism, undemocratic
- loool: looool, lool, loooool, looooool, loooooool
- enviroment: environment, environments, env, enviro, habitats
- she is to her what he is to ...
- she is to her what he is to ... [his, him, himself]

Twitter word embeddings - Analogies

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]

Twitter word embeddings - Analogies

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]
- go is for went what do is to... [did, doing, happened]

Twitter word embeddings - Analogies

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]
- go is for went what do is to... [did, doing, happened]
- big is to bigger what small is to... [smaller, larger, tiny]

Twitter word embeddings - Analogies

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]
- go is for went what do is to... [did, doing, happened]
- big is to bigger what small is to... [smaller, larger, tiny]
- poet is to poem what author is to... [novel, excerpt, memoir]

Evaluation of word embeddings

Intrinsic

- Easy, given, no need for additional effort
- Based on theoretical properties (linguistics), not always indicative of actual performance
- Word vector analogies (seen in previous slides)
- WordSim-353, SimLex-999
word similarity by humans vs. trained word embeddings

Extrinsic

- Based on a downstream machine learning application (classification, regression)
- Not always easy or given \Longrightarrow significant effort
- Is it the fault of the word embeddings or something else? Another sub-process that is failing, a task that is impossibly hard and so on. Requires an established, well-studied downstream task.

Evaluation of word embeddings

Intrinsic

- Easy, given, no need for additional effort
- Based on theoretical properties (linguistics), not always indicative of actual performance
- Word vector analogies (seen in previous slides)
- WordSim-353, SimLex-999
word similarity by humans vs. trained word embeddings

most important???

Extrinsic

- Based on a downstream machine learning application (classification, regression)
- Not always easy or given \Longrightarrow significant effort
- Is it the fault of the word embeddings or something else? Another sub-process that is failing, a task that is impossibly hard and so on. Requires an established, well-studied downstream task.

Evaluation of word embeddings

Intrinsic

- Easy, given, no need for additional effort
- Based on theoretical properties (linguistics), not always indicative of actual performance
- Word vector analogies (seen in previous slides)
- WordSim-353, SimLex-999
word similarity by humans vs. trained word embeddings

most important???

Extrinsic

- Based on a downstream machine learning application (classification, regression)
- Not always easy or given \Longrightarrow significant effort
- Is it the fault of the word embeddings or something else? Another sub-process that is failing, a task that is impossibly hard and so on. Requires an established, well-studied downstream task.

Other static word representation models

GloVe - aclanthology.org/D14-1162.pdf

- Global Vectors, uses ratios of probabilities from the word co-occurrence matrix
- not a neural network, bilinear model, scalable fast, not the best evaluation
- more optimisation functions?
$\arg \min _{\mathbf{C}, \mathbf{U}} \sum_{i \in \mathscr{V}} \sum_{j \in \mathscr{V}} f\left(x_{i j}\right)\left(\mathbf{c}_{j}^{\top} \mathbf{u}_{i}+\beta_{i}+\gamma_{j}-\log \left(x_{i j}\right)\right)^{2}$

Other static word representation models

GloVe - aclanthology.org/D14-1162.pdf

- Global Vectors, uses ratios of probabilities from the word co-occurrence matrix
- not a neural network, bilinear model, scalable fast, not the best evaluation
- more optimisation functions?
$\arg \min _{\mathbf{C}, \mathbf{U}} \sum_{i \in \mathscr{V}} \sum_{j \in \mathscr{V}} f\left(x_{i j}\right)\left(\mathbf{c}_{j}^{\top} \mathbf{u}_{i}+\beta_{i}+\gamma_{j}-\log \left(x_{i j}\right)\right)^{2}$

How do word2vec and GloVe deal with unknown words?

Other static word representation models

GloVe - aclanthology.org/D14-1162.pdf

- Global Vectors, uses ratios of probabilities from the word co-occurrence matrix
- not a neural network, bilinear model, scalable fast, not the best evaluation
- more optimisation functions?
$\arg \min _{\mathbf{C}, \mathbf{U}} \sum_{i \in \mathscr{V}} \sum_{j \in \mathscr{V}} f\left(x_{i j}\right)\left(\mathbf{c}_{j}^{\top} \mathbf{u}_{i}+\beta_{i}+\gamma_{j}-\log \left(x_{i j}\right)\right)^{2}$
fasttext - aclanthology.org/Q17-1010.pdf

How do word2vec and GloVe deal with unknown words?

- deals with unknown words
- a word is represented by itself plus sub-word n-grams
e.g. "steely" \Longrightarrow <steely>, <st, ste, tee, eel, ely, ly> by setting n-gram length to 3
- < > special word boundaries to distinguish prefix / suffix, train with skip-gram
- known words are represented by the sum of all their sub-word embeddings
- unknown words are represented by the sum of embeddings of sub-words

Connection between SVD and topic models

- Friday, February 2
- Recurrent Neural Networks (for NLP)

