
Stascal Natural Language Processing [COMP0087]

Word embeddings

Vasileios Lampos
Computer Science, UCL

🖥 lampos.net

https://lampos.net

About this lecture

‣ In this lecture:
— Sparse and dense vector space representa$ons for words
— word2vec with skip-gram (and nega.ve sampling)

‣ Reading / Lecture based on: Chapter 6 of “Speech and Language Processing” (SLP)
by Jurafsky and Mar$n (2023) — web.stanford.edu/~jurafsky/slp3/

‣ Clipped slides: lampos.net/teaching

‣ Addi$onal material
✴ word2vec — see arxiv.org/abs/1301.3781 and proceedings.neurips.cc/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf
✴ probabilis$c topic models — see youtube.com/watch?v=yK7nN3FcgUs

2COMP0087 - Word embeddings

https://web.stanford.edu/~jurafsky/slp3/
https://lampos.net/teaching
https://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://www.youtube.com/watch?v=yK7nN3FcgUs

Word embeddings by coun$ng

3COMP0087 - Word embeddings

‣ Specify word co-occurrence context window in a corpus

‣ words around the target word is a common se`ng+/ − 4

“Another Brick in the Wall” part 2 is a Pink Floyd song from
“The Wall” album that was released as a single in 1979 and
while it was banned by at least one authoritarian regime, it

managed to sell more than 4 million copies worldwide.

Word embeddings by coun$ng

4COMP0087 - Word embeddings

‣ Specify word co-occurrence context window in a corpus

‣ words around the target word is a common se`ng

‣ short context window syntax / grammar aware representa$on
+/ − 4

→

“Another Brick in the Wall” part 2 is a Pink Floyd song from
“The Wall” album that was released as a single in 1979 and
while it was banned by at least one authoritarian regime, it

managed to sell more than 4 million copies worldwide.

Word embeddings by coun$ng

5COMP0087 - Word embeddings

‣ Specify word co-occurrence context window in a corpus

‣ words around the target word is a common se`ng

‣ short context window syntax / grammar aware representa$on

‣ long context window more abstrac$on / meaning / seman$cs

+/ − 4
→

→

“Another Brick in the Wall” part 2 is a Pink Floyd song from
“The Wall” album that was released as a single in 1979 and
while it was banned by at least one authoritarian regime, it

managed to sell more than 4 million copies worldwide.

Word embeddings by coun$ng

6COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

a an zo
o

a

an

zoo

20 50 ⋯ 0 ⋯ 200
50 10 ⋯ 0 ⋯ 100
⋮ ⋮ ⋱ ⋱ ⋱ ⋮

200 100 ⋯ 0 ⋯ 2

c j

|𝒱 |

Word embeddings by coun$ng

6COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

a an zo
o

a

an

zoo

20 50 ⋯ 0 ⋯ 200
50 10 ⋯ 0 ⋯ 100
⋮ ⋮ ⋱ ⋱ ⋱ ⋮

200 100 ⋯ 0 ⋯ 2

c j

‣ given a corpus, count the amount of $mes words co-occur within the specified
context windows

|𝒱 |

Word embeddings by coun$ng

6COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

a an zo
o

a

an

zoo

20 50 ⋯ 0 ⋯ 200
50 10 ⋯ 0 ⋯ 100
⋮ ⋮ ⋱ ⋱ ⋱ ⋮

200 100 ⋯ 0 ⋯ 2

c j

‣ given a corpus, count the amount of $mes words co-occur within the specified
context windows

‣ generates primi$ve word embeddings

word
embeddings

|𝒱 |

Word embeddings by coun$ng

6COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

a an zo
o

a

an

zoo

20 50 ⋯ 0 ⋯ 200
50 10 ⋯ 0 ⋯ 100
⋮ ⋮ ⋱ ⋱ ⋱ ⋮

200 100 ⋯ 0 ⋯ 2

c j

‣ given a corpus, count the amount of $mes words co-occur within the specified
context windows

‣ generates primi$ve word embeddings
‣ sparse representa$on, sparser for shorter context windows

‣ high dimensional representa$on; depends on vocabulary size, |𝒱 |

word
embeddings

|𝒱 |

Word embeddings by coun$ng — Pointwise Mutual Informa$on (PMI)

7COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

Word embeddings by coun$ng — Pointwise Mutual Informa$on (PMI)

7COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

Word embeddings by coun$ng — Pointwise Mutual Informa$on (PMI)

7COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

‣ Pointwise Mutual Informa$on (PMI)
How oQen 2 events (in NLP: words!) co-occur compared to our
expecta.on under the assump.on that these events were independent

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

Word embeddings by coun$ng — Pointwise Mutual Informa$on (PMI)

7COMP0087 - Word embeddings

Word co-occurrence matrix C ∈ ℕ|𝒱|×|𝒱|

‣ Pointwise Mutual Informa$on (PMI)
How oQen 2 events (in NLP: words!) co-occur compared to our
expecta.on under the assump.on that these events were independent

‣ For a target word and a context word wi cj

PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

if , then the
units are bits!
log2

Word embeddings by coun$ng — PPMI

8COMP0087 - Word embeddings

PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

Word embeddings by coun$ng — PPMI

8COMP0087 - Word embeddings

‣ PMI iden$fies strongly associated words even when less frequent

‣ PMI ranges in (−∞, + ∞)

‣ shrinks the rangelog(⋅)

PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

Word embeddings by coun$ng — PPMI

8COMP0087 - Word embeddings

‣ PMI iden$fies strongly associated words even when less frequent

‣ PMI ranges in (−∞, + ∞)

‣ shrinks the rangelog(⋅)

‣ Nega9ve PMI values are harder to interpret and evaluate
— “relatedness” is more comprehensive / objec$ve

‣ Force posi$vity — Posi$ve PMI (PPMI)

PPMI(wi, cj) = max (PMI(wi, cj), 0)

PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

Word embeddings by coun$ng — PPMI

9COMP0087 - Word embeddings

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

PPMI(wi, cj) = max (PMI(wi, cj), 0)PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

Word embeddings by coun$ng — PPMI

9COMP0087 - Word embeddings

number of $mes co-occurs with
divided by the total word count in

wi cj
Q

p(wi, cj) =
qij

∑|𝒱|
i=1 ∑d

j=1 qij

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

PPMI(wi, cj) = max (PMI(wi, cj), 0)PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

Word embeddings by coun$ng — PPMI

9COMP0087 - Word embeddings

number of $mes co-occurs with
divided by the total word count in

wi cj
Q

p(wi) =
∑d

j=1 qij

∑|𝒱|
i=1 ∑d

j=1 qij

p(wi, cj) =
qij

∑|𝒱|
i=1 ∑d

j=1 qij

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

PPMI(wi, cj) = max (PMI(wi, cj), 0)PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

sum of -th
row of

i
Q

Word embeddings by coun$ng — PPMI

9COMP0087 - Word embeddings

number of $mes co-occurs with
divided by the total word count in

wi cj
Q

p(cj) =
∑|𝒱|

i=1 qij

∑|𝒱|
i=1 ∑d

j=1 qij
p(wi) =

∑d
j=1 qij

∑|𝒱|
i=1 ∑d

j=1 qij

p(wi, cj) =
qij

∑|𝒱|
i=1 ∑d

j=1 qij

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

PPMI(wi, cj) = max (PMI(wi, cj), 0)PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

sum of -th
row of

i
Q

sum of -th
column of

j
Q

Word embeddings by coun$ng — PPMI

9COMP0087 - Word embeddings

number of $mes co-occurs with
divided by the total word count in

wi cj
Q

p(cj) =
∑|𝒱|

i=1 qij

∑|𝒱|
i=1 ∑d

j=1 qij
p(wi) =

∑d
j=1 qij

∑|𝒱|
i=1 ∑d

j=1 qij

p(wi, cj) =
qij

∑|𝒱|
i=1 ∑d

j=1 qij

Word context matrix Q ∈ ℕ|𝒱|×d, d < |𝒱 |

PPMI(wi, cj) = max (PMI(wi, cj), 0)PMI(wi, cj) = log
p(wi, cj)

p(wi) ⋅ p(cj)

sum of -th
row of

i
Q

sum of -th
column of

j
Q

replace with

Word embeddings by matrix factorisa$on — SVD to PPMI

10COMP0087 - Word embeddings

0

0
××≈|𝒱 | × d

PPMI U

Σ V

k × d

k × k

|𝒱 | × kSVD

u1

ui

Singular
Value

Decomposi$on

(truncated)

Word embeddings by matrix factorisa$on — SVD to PPMI

10COMP0087 - Word embeddings

0

0
××≈|𝒱 | × d

PPMI U

Σ V

k × d

k × k

|𝒱 | × kSVD

‣ : -dimensional vector that represents word in our vocabulary
— dense word embedding
— commonly, , i.e. is short and dense
— matrices and are (or could be) thrown away

ui k i

k = 128 to 1024 ui
Σ V

u1

ui

Singular
Value

Decomposi$on

(truncated)

Word embeddings by matrix factorisa$on — SVD to PPMI

10COMP0087 - Word embeddings

0

0
××≈|𝒱 | × d

PPMI U

Σ V

k × d

k × k

|𝒱 | × kSVD

‣ : -dimensional vector that represents word in our vocabulary
— dense word embedding
— commonly, , i.e. is short and dense
— matrices and are (or could be) thrown away

ui k i

k = 128 to 1024 ui
Σ V

u1

ui

Singular
Value

Decomposi$on

(truncated)

Word embeddings by matrix factorisa$on — SVD to PPMI

10COMP0087 - Word embeddings

0

0
××≈|𝒱 | × d

PPMI U

Σ V

k × d

k × k

|𝒱 | × kSVD

‣ : -dimensional vector that represents word in our vocabulary
— dense word embedding
— commonly, , i.e. is short and dense
— matrices and are (or could be) thrown away

ui k i

k = 128 to 1024 ui
Σ V

u1

ui

Singular
Value

Decomposi$on

(truncated)

Any issues?

Word embeddings by matrix factorisa$on — SVD to PPMI

10COMP0087 - Word embeddings

0

0
××≈|𝒱 | × d

PPMI U

Σ V

k × d

k × k

|𝒱 | × kSVD

‣ : -dimensional vector that represents word in our vocabulary
— dense word embedding
— commonly, , i.e. is short and dense
— matrices and are (or could be) thrown away

ui k i

k = 128 to 1024 ui
Σ V

‣ Downsides: SVD has a significant computa$onal cost,
No intui$on — what do the SVD embeddings represent?

𝒪(|𝒱 | ⋅ d ⋅ k2)

u1

ui

Singular
Value

Decomposi$on

(truncated)

Any issues?

The NLP view (for this lecture)

11COMP0087 - Word embeddings

Encoder DecoderLarry Carlton is
cap.va.ng! +— Loss

f(x)

x
̂y y

dense

The NLP view (for this lecture)

11COMP0087 - Word embeddings

Encoder DecoderLarry Carlton is
cap.va.ng! +— Loss

f(x)

x
̂y y

dense

word2vec
(and many other methods)

Word embeddings by matrix factorisa$on — SVD to PPMI

12COMP0087 - Word embeddings

0

0
××≈|𝒱 | × d

PPMI U

Σ V

k × d

k × k

|𝒱 | × kSVD

‣ Interes$ng to know: A variant of word2vec (skip-gram with nega.ve
sampling that will see next) is implicitly factorising a word-context matrix,
whose cells are the pointwise mutual informa.on (PMI) of the respec.ve
word and context pairs, shiQed by a global constant

‣ More in papers.nips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf

u1

ui

https://papers.nips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf

Word embeddings by predic$on

13COMP0087 - Word embeddings

… said that “Hey Jude” is Beatles’ most famous song, but…

Word embeddings by predic$on

14COMP0087 - Word embeddings

… said that “Hey Jude” is Beatles’ most famous song, but…

centre word
wt

Word embeddings by predic$on

15COMP0087 - Word embeddings

… said that “Hey Jude” is Beatles’ most famous song, but…

centre word
context radiuswt

L = 3

Word embeddings by predic$on

16COMP0087 - Word embeddings

… said that “Hey Jude” is Beatles’ most famous song, but…

centre word
context radiuswt

L = 3

c = [wt−3 wt−2 wt−1 wt+1 wt+2 wt+3]context words

Word embeddings by predic$on

16COMP0087 - Word embeddings

… said that “Hey Jude” is Beatles’ most famous song, but…

centre word
context radius

p(c |wt) = ?
wt

L = 3

c = [wt−3 wt−2 wt−1 wt+1 wt+2 wt+3]

p(wt |c) = ?

context words

Predic9on tasks

or

Word embeddings by predic$on

17COMP0087 - Word embeddings

… said that “Hey Jude” is Beatles’ most famous song, but…

centre word
context radius

p(c |wt) = ?
wt

L = 3

c = [wt−3 wt−2 wt−1 wt+1 wt+2 wt+3]

p(wt |c) = ?

context words

Predic9on tasks

or

Con9nuous Bag of Words (CBOW)

skip-gram

word2vec — Con$nuous Bag of Words (CBOW)

18COMP0087 - Word embeddings

decoder

Hey

Jude

is

…

…

…

+

…

…

soGmax

d

n

̂y

encoder

…

…

…

most

famous

song

lookup W∈ℝn×d

…

aardvark

a

jam

zyzzyva

? Beatles

u∈ℝd

Text window: [Hey, Jude, is, Beatles, most, famous, song]

L = 3

word2vec — Con$nuous Bag of Words (CBOW)

18COMP0087 - Word embeddings

decoder

Hey

Jude

is

…

…

…

+

…

…

soGmax

d

n

̂y

encoder

…

…

…

most

famous

song

lookup W∈ℝn×d

…

aardvark

a

jam

zyzzyva

? Beatles

u∈ℝd

What do and denote?n d

Text window: [Hey, Jude, is, Beatles, most, famous, song]

L = 3

word2vec — Con$nuous Bag of Words (CBOW)

18COMP0087 - Word embeddings

decoder

Hey

Jude

is

…

…

…

+

…

…

soGmax

d

n

̂y

encoder

…

…

…

most

famous

song

lookup W∈ℝn×d

…

aardvark

a

jam

zyzzyva

? Beatles

u∈ℝd

What do and denote?n d

Text window: [Hey, Jude, is, Beatles, most, famous, song]

L = 3

Why do we use the sormax at the very end?

word2vec — skip-gram

19COMP0087 - Word embeddings

decoder

Beatles

…

…

soGmax

d

n

ŷ

encoder

lookup

u∈ℝd

W∈ℝn×d

…

aardvark

a

jam

zyzzyva

?

Hey

Jude

is

most

famous

song

Text window: [Hey, Jude, is, Beatles, most, famous, song]

L = 3

word2vec — Target and context word embeddings

20COMP0087 - Word embeddings

… said that “Hey Jude” is Beatles’ most famous song, but…

target word context radius
wt L = 3

[wt−3 wt−2 wt−1 wt+1 wt+2 wt+3]context words

context word i → ci ∈ℝd

target word j → uj ∈ℝd

C∈ℝn×d

U∈ℝd×n

context word embeddings

target word embeddings

word2vec — skip-gram

21

Beatles

…

…

soGmax

d

n

ŷ

encoder

lookup

u∈ℝd

W∈ℝn×d

…

aardvark

a

jam

zyzzyva

?

Hey

Jude

is

most

famous

song

L = 3

decoder

COMP0087 - Word embeddings

word2vec — skip-gram

21

Beatles

…

…

soGmax

d

n

ŷ

encoder

lookup

u∈ℝd

W∈ℝn×d

…

aardvark

a

jam

zyzzyva

?

Hey

Jude

is

most

famous

song

L = 3

decoder(target) word
embedding

COMP0087 - Word embeddings

word2vec — skip-gram

21

Beatles

…

…

soGmax

d

n

ŷ

encoder

lookup

u∈ℝd

W∈ℝn×d

…

aardvark

a

jam

zyzzyva

?

Hey

Jude

is

most

famous

song

L = 3

decoder(target) word
embedding

context word
embeddings

C = W

COMP0087 - Word embeddings

word2vec — skip-gram

21

Beatles

…

…

soGmax

d

n

ŷ

encoder

lookup

u∈ℝd

W∈ℝn×d

…

aardvark

a

jam

zyzzyva

?

Hey

Jude

is

most

famous

song

L = 3

decoder(target) word
embedding

context word
embeddings

C = W W1,: ⋅ u

COMP0087 - Word embeddings

word2vec — skip-gram

21

Beatles

…

…

soGmax

d

n

ŷ

encoder

lookup

u∈ℝd

W∈ℝn×d

…

aardvark

a

jam

zyzzyva

?

Hey

Jude

is

most

famous

song

L = 3

decoder(target) word
embedding

context word
embeddings

C = W W1,: ⋅ u = c1 ⋅ u

COMP0087 - Word embeddings

 row of or 1st W C

word2vec — skip-gram

21

Beatles

…

…

soGmax

d

n

ŷ

encoder

lookup

u∈ℝd

W∈ℝn×d

…

aardvark

a

jam

zyzzyva

?

Hey

Jude

is

most

famous

song

L = 3

decoder(target) word
embedding

context word
embeddings

C = W W1,: ⋅ u = c1 ⋅ u

sim(ci, uj) = ci ⋅ uj
maximise the dot product

between context and centre words
∈ℝObjec9ve:

COMP0087 - Word embeddings

 row of or 1st W C

word2vec — skip-gram

22COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

word2vec — skip-gram

22COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

How big is ?T

word2vec — skip-gram

22COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

if our context radius and our target word is L = 2 wt

How big is ?T

word2vec — skip-gram

22COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

if our context radius and our target word is L = 2 wt

skip-gram aims to maximise this

p(wt−2 |wt) ⋅ p(wt−1 |wt) ⋅ p(wt+1 |wt) ⋅ p(wt+2 |wt)

How big is ?T

word2vec — skip-gram

22COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

if our context radius and our target word is L = 2 wt

skip-gram aims to maximise this

p(wt−2 |wt) ⋅ p(wt−1 |wt) ⋅ p(wt+1 |wt) ⋅ p(wt+2 |wt)

words are
independent

from each other

How big is ?T

word2vec — skip-gram

22COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

if our context radius and our target word is L = 2 wt

skip-gram aims to maximise this

p(wt−2 |wt) ⋅ p(wt−1 |wt) ⋅ p(wt+1 |wt) ⋅ p(wt+2 |wt)

words are
independent

from each other

How big is ?T

Does it maser if a
word comes before

or arer ?wt

word2vec — skip-gram

22COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

if our context radius and our target word is L = 2 wt

skip-gram aims to maximise this

p(wt−2 |wt) ⋅ p(wt−1 |wt) ⋅ p(wt+1 |wt) ⋅ p(wt+2 |wt)

=
L

∏
i=−L, i≠0

p(wt−i |wt)

words are
independent

from each other

How big is ?T

Does it maser if a
word comes before

or arer ?wt

word2vec — skip-gram

23COMP0087 - Word embeddings

max
L

∏
i=−L, i≠0

p(wt−i |wt)for one context window

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

word2vec — skip-gram

23COMP0087 - Word embeddings

max
L

∏
i=−L, i≠0

p(wt−i |wt)for one context window

across the en$re corpus

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

word2vec — skip-gram

23COMP0087 - Word embeddings

max
L

∏
i=−L, i≠0

p(wt−i |wt)for one context window

across the en$re corpus max
1
T

T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt)

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

word2vec — skip-gram

23COMP0087 - Word embeddings

max
L

∏
i=−L, i≠0

p(wt−i |wt)for one context window

across the en$re corpus max
1
T

T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt)

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

let’s work with the log

why?

word2vec — skip-gram

23COMP0087 - Word embeddings

max
L

∏
i=−L, i≠0

p(wt−i |wt)for one context window

across the en$re corpus max
1
T

T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt)

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

let’s work with the log max
1
T

log
T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt)

why?

word2vec — skip-gram

23COMP0087 - Word embeddings

max
L

∏
i=−L, i≠0

p(wt−i |wt)for one context window

across the en$re corpus max
1
T

T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt)

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

let’s work with the log max
1
T

log
T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt) = max
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt))
why?

word2vec — skip-gram

24COMP0087 - Word embeddings

let’s work with the log max
1
T

log
T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt) = max
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt))

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

word2vec — skip-gram

24COMP0087 - Word embeddings

let’s work with the log max
1
T

log
T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt) = max
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt))

minimise this min −
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt))

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

word2vec — skip-gram

24COMP0087 - Word embeddings

let’s work with the log max
1
T

log
T

∏
t=1

L

∏
i=−L, i≠0

p(wt−i |wt) = max
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt))

minimise this min −
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt))

‣ What are we minimising this against? Parameters of the model?

‣ How do we learn word embeddings from this?

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

word2vec — skip-gram

25COMP0087 - Word embeddings

min −
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt))

p(wt−i |wt)

context word target word

Imagine our corpus is a sequence of tokensT w1, w2, …, wT

word2vec — skip-gram

26COMP0087 - Word embeddings

p(wt−i |wt)

context word target word

word2vec — skip-gram

26COMP0087 - Word embeddings

p(wt−i |wt)

context word target word

Context word is vocabulary word
that has an embedding
assuming context embedding matrix

wt−i c∈𝒱
c∈ℝ1×d

C∈ℝn×d

word2vec — skip-gram

26COMP0087 - Word embeddings

p(wt−i |wt)

context word target word

Target word is
with an embedding
assuming embedding matrix

wt u∈𝒱
u∈ℝd×1

U∈ℝd×n

Context word is vocabulary word
that has an embedding
assuming context embedding matrix

wt−i c∈𝒱
c∈ℝ1×d

C∈ℝn×d

= p(c |u)

word2vec — skip-gram

26COMP0087 - Word embeddings

dot product!

p(wt−i |wt)

context word target word

sim(wt−1, wt) = sim(c, u) = c ⋅ u

Target word is
with an embedding
assuming embedding matrix

wt u∈𝒱
u∈ℝd×1

U∈ℝd×n

Context word is vocabulary word
that has an embedding
assuming context embedding matrix

wt−i c∈𝒱
c∈ℝ1×d

C∈ℝn×d

= p(c |u)

word2vec — skip-gram

26COMP0087 - Word embeddings

dot product!

p(wt−i |wt)

context word target word

sim(wt−1, wt) = sim(c, u) = c ⋅ u

Target word is
with an embedding
assuming embedding matrix

wt u∈𝒱
u∈ℝd×1

U∈ℝd×n

p(c |u) =
exp (c ⋅ u)

∑
ck∈C

exp (ck ⋅ u)
normalise

using sormax

Context word is vocabulary word
that has an embedding
assuming context embedding matrix

wt−i c∈𝒱
c∈ℝ1×d

C∈ℝn×d

= p(c |u)

word2vec — skip-gram

26COMP0087 - Word embeddings

dot product!

p(wt−i |wt)

context word target word

sim(wt−1, wt) = sim(c, u) = c ⋅ u

Target word is
with an embedding
assuming embedding matrix

wt u∈𝒱
u∈ℝd×1

U∈ℝd×n

p(c |u) =
exp (c ⋅ u)

∑
ck∈C

exp (ck ⋅ u)
normalise

using sormax

Context word is vocabulary word
that has an embedding
assuming context embedding matrix

wt−i c∈𝒱
c∈ℝ1×d

C∈ℝn×d

= p(c |u)

Is it expensive to
compute the

denominator of this?

word2vec — skip-gram

27COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

min −
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt)) u∈ℝd

W∈ℝn×d

decoder

Beatles

…

…

soGmax

d

n

ŷ

encoder

…

?

Hey

Jude

is

most

famous

song

word2vec — skip-gram

27COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

min −
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt)) u∈ℝd

W∈ℝn×d

decoder

Beatles

…

…

soGmax

d

n

ŷ

encoder

…

?

Hey

Jude

is

most

famous

song

let’s insert the
previous informa$on

word2vec — skip-gram

27COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

min −
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt)) u∈ℝd

W∈ℝn×d

decoder

Beatles

…

…

soGmax

d

n

ŷ

encoder

…

?

Hey

Jude

is

most

famous

song

arg min
C,U

−
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log
exp (cwt−i

⋅ uwt)
n

∑
j=1

exp (cj ⋅ uwt)
embedding

matrices

Opt. task:

let’s insert the
previous informa$on

word2vec — skip-gram

27COMP0087 - Word embeddings

Imagine our corpus is a sequence of tokensT

w1, w2, …, wT

min −
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log (p(wt−i |wt)) u∈ℝd

W∈ℝn×d

decoder

Beatles

…

…

soGmax

d

n

ŷ

encoder

…

?

Hey

Jude

is

most

famous

song

ranks all words in the vocabulary
in terms of their probability of being

within the context window

too expensive!!!

arg min
C,U

−
1
T

T

∑
t=1

L

∑
i=−L, i≠0

log
exp (cwt−i

⋅ uwt)
n

∑
j=1

exp (cj ⋅ uwt)
embedding

matrices

Opt. task:

let’s insert the
previous informa$on

word2vec — skip-gram with nega.ve sampling

28COMP0087 - Word embeddings

Solu9on: Let’s change the objec.ve func.on by using “nega.ve sampling”!

Given a target word and another word
model the probability of and appearing in the same context

 binary classifica9on

u v
u v

⟹

word2vec — skip-gram with nega.ve sampling

28COMP0087 - Word embeddings

Solu9on: Let’s change the objec.ve func.on by using “nega.ve sampling”!

Given a target word and another word
model the probability of and appearing in the same context

 binary classifica9on

u v
u v

⟹

p(D = 1 |v, u) = σ(v ⋅ u) =
1

1 + exp(−v ⋅ u)

they appear
in the same context

word2vec — skip-gram with nega.ve sampling

28COMP0087 - Word embeddings

Solu9on: Let’s change the objec.ve func.on by using “nega.ve sampling”!

Given a target word and another word
model the probability of and appearing in the same context

 binary classifica9on

u v
u v

⟹

p(D = 1 |v, u) = σ(v ⋅ u) =
1

1 + exp(−v ⋅ u)

they appear
in the same context

p(D = 0 |v, u) = 1 − p(D = 1 |v, u) = 1 − σ(v ⋅ u) = σ(−v ⋅ u)

they don’t appear
in the same context

word2vec — skip-gram with nega.ve sampling

29COMP0087 - Word embeddings

Now, if is our target word and a context word
we want to maximise

u c

arg max
C,U ∏

{c,u}∈𝒟

p(D = 1 |c, u)

where holds all target-context word pairs in our corpus𝒟

word2vec — skip-gram with nega.ve sampling

29COMP0087 - Word embeddings

Now, if is our target word and a context word
we want to maximise

u c

arg max
C,U ∏

{c,u}∈𝒟

p(D = 1 |c, u)

where holds all target-context word pairs in our corpus𝒟

arg max
C,U ∏

{c,u}∈𝒟

σ(c ⋅ u)

word2vec — skip-gram with nega.ve sampling

29COMP0087 - Word embeddings

Now, if is our target word and a context word
we want to maximise

u c

arg max
C,U ∏

{c,u}∈𝒟

p(D = 1 |c, u)

where holds all target-context word pairs in our corpus𝒟

arg max
C,U ∏

{c,u}∈𝒟

σ(c ⋅ u)
log(⋅)

word2vec — skip-gram with nega.ve sampling

29COMP0087 - Word embeddings

Now, if is our target word and a context word
we want to maximise

u c

arg max
C,U ∏

{c,u}∈𝒟

p(D = 1 |c, u)

where holds all target-context word pairs in our corpus𝒟

arg max
C,U ∏

{c,u}∈𝒟

σ(c ⋅ u) arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u))
log(⋅)

word2vec — skip-gram with nega.ve sampling

30COMP0087 - Word embeddings

 is our target word and a context wordu c

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u))

word2vec — skip-gram with nega.ve sampling

30COMP0087 - Word embeddings

 is our target word and a context wordu c

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u))

but an undesirable se`ng that maximises this func$on is…

word2vec — skip-gram with nega.ve sampling

30COMP0087 - Word embeddings

 is our target word and a context wordu c

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u))

but an undesirable se`ng that maximises this func$on is…

c = u⊤ and c ⋅ u = k, where k ≥ 40

word2vec — skip-gram with nega.ve sampling

30COMP0087 - Word embeddings

 is our target word and a context wordu c

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u))

but an undesirable se`ng that maximises this func$on is…

c = u⊤ and c ⋅ u = k, where k ≥ 40

⟹ σ(c ⋅ u) = σ(40) ≈ 1 logis$c sigmoid’s max value

word2vec — skip-gram with nega.ve sampling

31COMP0087 - Word embeddings

Fix: generate random pairs () and consider them as “nega1ve” target-context pairs𝒟′

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u)) + ∑
{c,u}∈𝒟′

log(σ(−c ⋅ u))

 is our target word and a context wordu c

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u))

word2vec — skip-gram with nega.ve sampling

31COMP0087 - Word embeddings

Fix: generate random pairs () and consider them as “nega1ve” target-context pairs𝒟′

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u)) + ∑
{c,u}∈𝒟′

log(σ(−c ⋅ u))

arg min
C,U

− ∑
{c,u}∈𝒟

log(σ(c ⋅ u)) + ∑
{c,u}∈𝒟′

log(σ(−c ⋅ u))

 is our target word and a context wordu c

arg max
C,U ∑

{c,u}∈𝒟

log(σ(c ⋅ u))

minimise
this!

word2vec — skip-gram with nega.ve sampling

32COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

word2vec — skip-gram with nega.ve sampling

32COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]Logis$c cross-entropy loss

word2vec — skip-gram with nega.ve sampling

32COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]Logis$c cross-entropy loss

∂Lce
∂c

= ?
∂Lce
∂hi

= ?

∂Lce
∂u

= ?

context word
embeddings

k + 1

target word
embedding

word2vec — skip-gram with nega.ve sampling

33COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

∂Lce
∂c

=

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]

word2vec — skip-gram with nega.ve sampling

33COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

∂Lce
∂c

=

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]
0

word2vec — skip-gram with nega.ve sampling

33COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

∂Lce
∂c

=
1

σ(c ⋅ u)

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]
0

chain rule…!

word2vec — skip-gram with nega.ve sampling

33COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

∂Lce
∂c

=
1

σ(c ⋅ u)
⋅ σ(c ⋅ u) ⋅ (1 − σ(c ⋅ u))

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]
0

dσ(x)
dx

= σ(x) ⋅ (1 − σ(x))

reminder

chain rule…!

word2vec — skip-gram with nega.ve sampling

33COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

∂Lce
∂c

=
1

σ(c ⋅ u)
⋅ σ(c ⋅ u) ⋅ (1 − σ(c ⋅ u)) ⋅ u

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]
0

dσ(x)
dx

= σ(x) ⋅ (1 − σ(x))

reminder

chain rule…!

word2vec — skip-gram with nega.ve sampling

33COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

∂Lce
∂c

=
1

σ(c ⋅ u)
⋅ σ(c ⋅ u) ⋅ (1 − σ(c ⋅ u))− ⋅ u

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]
0

dσ(x)
dx

= σ(x) ⋅ (1 − σ(x))

reminder

chain rule…!

word2vec — skip-gram with nega.ve sampling

33COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

∂Lce
∂c

=
1

σ(c ⋅ u)
⋅ σ(c ⋅ u) ⋅ (1 − σ(c ⋅ u))− ⋅ u

= (σ(c ⋅ u) − 1) ⋅ u

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]
0

dσ(x)
dx

= σ(x) ⋅ (1 − σ(x))

reminder

chain rule…!

word2vec — skip-gram with nega.ve sampling

34COMP0087 - Word embeddings

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]

word2vec — skip-gram with nega.ve sampling

34COMP0087 - Word embeddings

∂Lce
∂hi

= ?

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]

word2vec — skip-gram with nega.ve sampling

34COMP0087 - Word embeddings

∂Lce
∂hi

= ?

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]

= σ(hi ⋅ u) ⋅ u

word2vec — skip-gram with nega.ve sampling

34COMP0087 - Word embeddings

∂Lce
∂hi

= ?

∂Lce
∂u

= (σ(c ⋅ u) − 1) c +
k

∑
i=1

(σ(hi ⋅ u) ⋅ hi)

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]

= σ(hi ⋅ u) ⋅ u

word2vec — skip-gram with nega.ve sampling

35COMP0087 - Word embeddings

ct+1 = ct − α (∂Lce
∂c)

t
= ct − α (σ(ct ⋅ ut) − 1) ⋅ ut

hi; t+1 = hi; t − α σ(hi; t ⋅ ut) ut

ut+1 = ut − α [(σ(ct ⋅ ut) − 1) ct +
k

∑
i=1

(σ(hi; t ⋅ ut) ⋅ hi; t)]

rows of the context
embedding matrix C

Suppose we have a target word , a valid context word ,
and noise words (nega$ve samples) chosen randomly

u c
k hi , i∈{1,…, k}

Lce = − [log(σ(c ⋅ u)) +
k

∑
i=1

log(σ(−hi ⋅ u))]

gradient descent with
learning rate α

word2vec 2D projec$ons

36COMP0087 - Word embeddings
-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

40

that
this

with
have

just

your

like

what

love

dont

good

from

when

will

about

today

time

know

they

cant

morethink

well

back

people
going

would
need

there
been

some

much

want

please

really

thanks

haha

night

great

then

follow

still

them

happy

onlythats

last

work

come

best

were

make

youre

even
never

here

over

right

hope

look

thank

tonight

life

could should

than

next
tomorrow

fuck

very

after

yeah

done

first

ever

year

again

feel

always

shit

being

down

week

better

getting

home

take

morning

fucking

their

wait

birthday

because
where

looking

nice

actually

someone

though

gonna

didnt

game

watch

into

thing

london

mate

these

days

same
hate

amazing

little

before

made

sure

watching

doing

something

world

long

everyone

does

give

said

such

video

many

stop

having

rain

every

sleep

thought

looks

live

most

another

twitter

other

away

show

miss

start

things

weekend

help

years

keep

sorry

find

soon

lovely

tell

free

anyone

girl

play

seen

wind

tweet

wish

might

team

coming

already

guys

whats

house

photo

wanna

theres

check

nothing

doesnt

makes

school

mean

also

beautiful

those

through

myself

wont

phone

half

everything

pretty

must

believe

money

real

christmas

friends

news

which

true

isnt

excited

girls

left

hard

around

face

playing

head

shes

hours

anything
trying

music

season

enough

person

hair

forward

call

lets

funny

feeling

friday

read

remember went

making

maybe
times

wrong

havent

song

full

baby

ready

both

okay

until

probably

food

working

theyre

place

since

without

humidity

talk

luck

cool

name

temperature

sunday

early
party

mind

hell
while

hear

weeks

gone

cute

football

city

family

saturday
finallyfriend

stuff

boys

leave

saying

till

found

awesome

needs

youve

fans

change

book

used

lost

sick

says

thinking

point
cause

enjoy

followers

aint

part stay

black

idea

perfect
summer

hour

glad

seeing

film

room

literally

gets

slowly

mine

care

open

else

sounds

chance

weather

waiting

whole

favourite

wasnt told

talking

welcome

absolutely

meet

late

support

least

club

yesterday

later

once

brilliant

bring

definitely

following
taking

tired

quite

wouldnt

heart

tickets

cheers

falling

england

class

coursefine

heard

goes

post
tweets

bitch

united

yourself

park

high

called

dead

minutes

holiday

followed

couldnt

goal

against

round

cold

train

proud

seriously

league

came

listen

monday

pressure

evening

moment

worth

white

kids

missed

story

hello

started
worst

word

games

send

walk
past

picture

rising

move

road

guess

business

month

understand

match

different

second
poor

liked

final

either

liverpool

agree

wanted

posted

between

barometer

text

weird
together

took

number

comes

side

turn

vote

drink

fair
bloody

eyes

young

join

rather

album

lots

problem

dream

damn

ones

town

under

seems

wants

onlineforget

words

finished

break

beat
anyway

running

wonder

reading

stupid

months

kind

crazy

listening

loved

babe

fantastic

happened

interesting

gotta

manchester

cannot

plus

close

bored

stats

reason

sweet

sometimes

happen

watched

players

arsenal

less

anymore

played

super

exactly

busy

player

rest

loving

sound

means

woman

brother

imagine

fact
deal

question

each

street

dear

dinner

west

couple

lucky

almost

worse

outside

college

sign
starting

hopefully

line
three

easy

instead

able

gust

figshare.com/ar$cles/dataset/UK_Twiser_word_embeddings_II_/5791650

Twiser (“X”) based (1.1 billion tweets)
skip-gram word embeddings with 512
dimensions and nega$ve sampling
with 10 noise words

https://figshare.com/articles/dataset/UK_Twitter_word_embeddings_II_/5791650

word2vec 2D projec$ons

36COMP0087 - Word embeddings
-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

40

that
this

with
have

just

your

like

what

love

dont

good

from

when

will

about

today

time

know

they

cant

morethink

well

back

people
going

would
need

there
been

some

much

want

please

really

thanks

haha

night

great

then

follow

still

them

happy

onlythats

last

work

come

best

were

make

youre

even
never

here

over

right

hope

look

thank

tonight

life

could should

than

next
tomorrow

fuck

very

after

yeah

done

first

ever

year

again

feel

always

shit

being

down

week

better

getting

home

take

morning

fucking

their

wait

birthday

because
where

looking

nice

actually

someone

though

gonna

didnt

game

watch

into

thing

london

mate

these

days

same
hate

amazing

little

before

made

sure

watching

doing

something

world

long

everyone

does

give

said

such

video

many

stop

having

rain

every

sleep

thought

looks

live

most

another

twitter

other

away

show

miss

start

things

weekend

help

years

keep

sorry

find

soon

lovely

tell

free

anyone

girl

play

seen

wind

tweet

wish

might

team

coming

already

guys

whats

house

photo

wanna

theres

check

nothing

doesnt

makes

school

mean

also

beautiful

those

through

myself

wont

phone

half

everything

pretty

must

believe

money

real

christmas

friends

news

which

true

isnt

excited

girls

left

hard

around

face

playing

head

shes

hours

anything
trying

music

season

enough

person

hair

forward

call

lets

funny

feeling

friday

read

remember went

making

maybe
times

wrong

havent

song

full

baby

ready

both

okay

until

probably

food

working

theyre

place

since

without

humidity

talk

luck

cool

name

temperature

sunday

early
party

mind

hell
while

hear

weeks

gone

cute

football

city

family

saturday
finallyfriend

stuff

boys

leave

saying

till

found

awesome

needs

youve

fans

change

book

used

lost

sick

says

thinking

point
cause

enjoy

followers

aint

part stay

black

idea

perfect
summer

hour

glad

seeing

film

room

literally

gets

slowly

mine

care

open

else

sounds

chance

weather

waiting

whole

favourite

wasnt told

talking

welcome

absolutely

meet

late

support

least

club

yesterday

later

once

brilliant

bring

definitely

following
taking

tired

quite

wouldnt

heart

tickets

cheers

falling

england

class

coursefine

heard

goes

post
tweets

bitch

united

yourself

park

high

called

dead

minutes

holiday

followed

couldnt

goal

against

round

cold

train

proud

seriously

league

came

listen

monday

pressure

evening

moment

worth

white

kids

missed

story

hello

started
worst

word

games

send

walk
past

picture

rising

move

road

guess

business

month

understand

match

different

second
poor

liked

final

either

liverpool

agree

wanted

posted

between

barometer

text

weird
together

took

number

comes

side

turn

vote

drink

fair
bloody

eyes

young

join

rather

album

lots

problem

dream

damn

ones

town

under

seems

wants

onlineforget

words

finished

break

beat
anyway

running

wonder

reading

stupid

months

kind

crazy

listening

loved

babe

fantastic

happened

interesting

gotta

manchester

cannot

plus

close

bored

stats

reason

sweet

sometimes

happen

watched

players

arsenal

less

anymore

played

super

exactly

busy

player

rest

loving

sound

means

woman

brother

imagine

fact
deal

question

each

street

dear

dinner

west

couple

lucky

almost

worse

outside

college

sign
starting

hopefully

line
three

easy

instead

able

gust

figshare.com/ar$cles/dataset/UK_Twiser_word_embeddings_II_/5791650

Twiser (“X”) based (1.1 billion tweets)
skip-gram word embeddings with 512
dimensions and nega$ve sampling
with 10 noise words

family

body

see, listen,
read

loca$ons /
teams

https://figshare.com/articles/dataset/UK_Twitter_word_embeddings_II_/5791650

Word analogies: The infamous “king — man + woman ≈ queen”

vector(‘queen’) vector(‘king’) vector(‘man’) vector(‘woman’)≈ − +
NB

Word embeddings
tend to carry the

biases or
stereotypes of the

corpora used to
train them!

37COMP0087 - Word embeddings

Word analogies: The infamous “king — man + woman ≈ queen”

vector(‘queen’) vector(‘king’) vector(‘man’) vector(‘woman’)≈ − +
a apb bpNB

Word embeddings
tend to carry the

biases or
stereotypes of the

corpora used to
train them!

37COMP0087 - Word embeddings

Word analogies: The infamous “king — man + woman ≈ queen”

vector(‘queen’) vector(‘king’) vector(‘man’) vector(‘woman’)≈ − +

Compute cosine similarity between the composite embedding and each other

word embedding in our vocabulary; expect that vector(‘queen’) will have the greatest one.
(ua − uap

+ ubp)
ub =

a apb bp

cosine similarity between ‘queen’ and ‘king’ - ‘man’ + ‘woman’

b = arg max
b∈𝒱 (cos (ub, ua − uap

+ ubp))

NB

Word embeddings
tend to carry the

biases or
stereotypes of the

corpora used to
train them!

37COMP0087 - Word embeddings

Word analogies: The infamous “king — man + woman ≈ queen”

vector(‘queen’) vector(‘king’) vector(‘man’) vector(‘woman’)≈ − +

Compute cosine similarity between the composite embedding and each other

word embedding in our vocabulary; expect that vector(‘queen’) will have the greatest one.
(ua − uap

+ ubp)
ub =

a apb bp

cosine similarity between ‘queen’ and ‘king’ - ‘man’ + ‘woman’

b = arg max
b∈𝒱 (cos (ub, ua − uap

+ ubp))

 is for , what is for
or ‘man’ is for ‘king’, what ‘woman’ is for ‘queen’

ap a bp bThis gives rise to the word analogy

NB

Word embeddings
tend to carry the

biases or
stereotypes of the

corpora used to
train them!

37COMP0087 - Word embeddings

Word analogies: The infamous “king — man + woman ≈ queen”

vector(‘queen’) vector(‘king’) vector(‘man’) vector(‘woman’)≈ − +
a apb bpNB

Word embeddings
tend to carry the

biases or
stereotypes of the

corpora used to
train them!

10 CHAPTER 16 • SEMANTICS WITH DENSE VECTORS

requires for training (more neighboring words must be predicted). See the end of the
chapter for a pointer to surveys which have explored parameterizations like window-
size for different tasks.

16.3 Properties of embeddings

We’ll discuss in Section ?? how to evaluate the quality of different embeddings. But
it is also sometimes helpful to visualize them. Fig. 16.7 shows the words/phrases
that are most similar to some sample words using the phrase-based version of the
skip-gram algorithm (Mikolov et al., 2013a).

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Wash. Vaclav Havel ninja spray paint capitulation
Redmond Washington president Vaclav Havel martial arts graffiti capitulated
Microsoft Velvet Revolution swordsmanship taggers capitulating

Figure 16.7 Examples of the closest tokens to some target words using a phrase-based
extension of the skip-gram algorithm (Mikolov et al., 2013a).

One semantic property of various kinds of embeddings that may play in their
usefulness is their ability to capture relational meanings

Mikolov et al. (2013b) demonstrates that the offsets between vector embeddings
can capture some relations between words, for example that the result of the ex-
pression vector(‘king’) - vector(‘man’) + vector(‘woman’) is a vector close to vec-
tor(‘queen’); the left panel in Fig. 16.8 visualizes this by projecting a representation
down into 2 dimensions. Similarly, they found that the expression vector(‘Paris’)
- vector(‘France’) + vector(‘Italy’) results in a vector that is very close to vec-
tor(‘Rome’). Levy and Goldberg (2014a) shows that various other kinds of em-
beddings also seem to have this property.

Figure 16.8 Vector offsets showing relational properties of the vector space, shown by pro-
jecting vectors onto two dimensions using PCA. In the left panel, ’king’ - ’man’ + ’woman’
is close to ’queen’. In the right, we see the way offsets seem to capture grammatical number
(Mikolov et al., 2013b).

16.4 Brown Clustering

Brown clustering (Brown et al., 1992) is an agglomerative clustering algorithm forBrown

clustering

38COMP0087 - Word embeddings

 is for , what is for
or ‘man’ is for ‘king’, what ‘woman’ is for ‘queen’

ap a bp bThis gives rise to the word analogy

Twiser word embeddings — Similari$es

Top-5 most similar words using cosine similarity on word embeddings

‣ Monday: Tuesday, Thursday, Wednesday, Friday, Sunday

‣ January: February, August, October, March, June

‣ red: yellow, blue, purple, pink, green

‣ we: they, you, we’ve, our, us

‣ espresso: expresso, cappuccino, macchiato, lase, coffee

‣ linux: Unix, Centos, Debian, Ubuntu, Redhat

‣ democracy: democra$c, dictatorship, democracies, socialism, undemocra$c

‣ loool: looool, lool, loooool, looooool, loooooool

‣ enviroment: environment, environments, env, enviro, habitats

39COMP0087 - Word embeddings

Twiser word embeddings — Analogies

‣ she is to her what he is to …

40COMP0087 - Word embeddings

Twiser word embeddings — Analogies

‣ she is to her what he is to … [his, him, himself]

41COMP0087 - Word embeddings

Twiser word embeddings — Analogies

‣ she is to her what he is to … [his, him, himself]

‣ Rome is to Italy what London is to … [UK, Denmark, Sweden]

42COMP0087 - Word embeddings

Twiser word embeddings — Analogies

‣ she is to her what he is to … [his, him, himself]

‣ Rome is to Italy what London is to … [UK, Denmark, Sweden]

‣ go is for went what do is to… [did, doing, happened]

43COMP0087 - Word embeddings

Twiser word embeddings — Analogies

‣ she is to her what he is to … [his, him, himself]

‣ Rome is to Italy what London is to … [UK, Denmark, Sweden]

‣ go is for went what do is to… [did, doing, happened]

‣ big is to bigger what small is to… [smaller, larger, $ny]

44COMP0087 - Word embeddings

Twiser word embeddings — Analogies

‣ she is to her what he is to … [his, him, himself]

‣ Rome is to Italy what London is to … [UK, Denmark, Sweden]

‣ go is for went what do is to… [did, doing, happened]

‣ big is to bigger what small is to… [smaller, larger, $ny]

‣ poet is to poem what author is to… [novel, excerpt, memoir]

45COMP0087 - Word embeddings

Evalua$on of word embeddings

46COMP0087 - Word embeddings

Intrinsic

Extrinsic

‣ Easy, given, no need for addi$onal effort

‣ Based on theore$cal proper$es (linguis$cs), not always indica$ve of actual
performance

‣ Word vector analogies (seen in previous slides)

‣ WordSim-353, SimLex-999
word similarity by humans vs. trained word embeddings

‣ Based on a downstream machine learning applica$on (classifica$on, regression)

‣ Not always easy or given significant effort

‣ Is it the fault of the word embeddings or something else? Another sub-process
that is failing, a task that is impossibly hard and so on. Requires an established,
well-studied downstream task.

⟹

Evalua$on of word embeddings

46COMP0087 - Word embeddings

Intrinsic

Extrinsic

‣ Easy, given, no need for addi$onal effort

‣ Based on theore$cal proper$es (linguis$cs), not always indica$ve of actual
performance

‣ Word vector analogies (seen in previous slides)

‣ WordSim-353, SimLex-999
word similarity by humans vs. trained word embeddings

‣ Based on a downstream machine learning applica$on (classifica$on, regression)

‣ Not always easy or given significant effort

‣ Is it the fault of the word embeddings or something else? Another sub-process
that is failing, a task that is impossibly hard and so on. Requires an established,
well-studied downstream task.

⟹

most important???

Evalua$on of word embeddings

46COMP0087 - Word embeddings

Intrinsic

Extrinsic

‣ Easy, given, no need for addi$onal effort

‣ Based on theore$cal proper$es (linguis$cs), not always indica$ve of actual
performance

‣ Word vector analogies (seen in previous slides)

‣ WordSim-353, SimLex-999
word similarity by humans vs. trained word embeddings

‣ Based on a downstream machine learning applica$on (classifica$on, regression)

‣ Not always easy or given significant effort

‣ Is it the fault of the word embeddings or something else? Another sub-process
that is failing, a task that is impossibly hard and so on. Requires an established,
well-studied downstream task.

⟹

most important???

Other sta$c word representa$on models

47COMP0087 - Word embeddings

GloVe — aclanthology.org/D14-1162.pdf

‣ Global Vectors, uses ra$os of probabili$es from the word co-occurrence matrix

‣ not a neural network, bilinear model, scalable fast, not the best evalua$on

‣ more op$misa$on func$ons?

arg min
C,U ∑

i∈𝒱
∑
j∈𝒱

f(xij)(c⊤
j ui + βi + γj − log(xij))

2

https://aclanthology.org/D14-1162.pdf

Other sta$c word representa$on models

47COMP0087 - Word embeddings

GloVe — aclanthology.org/D14-1162.pdf

‣ Global Vectors, uses ra$os of probabili$es from the word co-occurrence matrix

‣ not a neural network, bilinear model, scalable fast, not the best evalua$on

‣ more op$misa$on func$ons?

arg min
C,U ∑

i∈𝒱
∑
j∈𝒱

f(xij)(c⊤
j ui + βi + γj − log(xij))

2

How do word2vec

and GloVe deal with
unknown words?

https://aclanthology.org/D14-1162.pdf

Other sta$c word representa$on models

47COMP0087 - Word embeddings

GloVe — aclanthology.org/D14-1162.pdf

‣ Global Vectors, uses ra$os of probabili$es from the word co-occurrence matrix

‣ not a neural network, bilinear model, scalable fast, not the best evalua$on

‣ more op$misa$on func$ons?

fasttext — aclanthology.org/Q17-1010.pdf

‣ deals with unknown words

‣ a word is represented by itself plus sub-word -grams
e.g. “steely” <steely>, <st, ste, tee, eel, ely, ly> by se`ng -gram length to

‣ < > special word boundaries to dis$nguish prefix / suffix, train with skip-gram

‣ known words are represented by the sum of all their sub-word embeddings

‣ unknown words are represented by the sum of embeddings of sub-words

n
⟹ n 3

arg min
C,U ∑

i∈𝒱
∑
j∈𝒱

f(xij)(c⊤
j ui + βi + γj − log(xij))

2

How do word2vec

and GloVe deal with
unknown words?

https://aclanthology.org/D14-1162.pdf
https://aclanthology.org/Q17-1010.pdf

p(d, W) =
D

∏
j=1

p(dj)
Nj

∏
i=1

K

∑
k=1

p(zji = k |dj) p(wji |zji = k)

Connec$on between SVD and topic models

zjidj wji

D

Nj

0

0
××≈N × D

X WK

ΣK CK

K × D

K × K

N × K

p(zk) =

D

∑
j=1

Nj

∑
i=1

n(dj, wi) p(zk |dj, wi)

D

∑
j=1

Nj

∑
i=1

n(dj, wi)

48COMP0087 - Word embeddings

pLSA
Probabilis$c
Latent
Seman$c
Analysis

PPMI

Next lecture with me

49COMP0087 - Word embeddings

‣ Friday, February 2

‣ Recurrent Neural Networks (for NLP)

n n n n

m m mmm

another brick in the

u[1] u[2] u[3] u[4]

Wu WuWuWu

Wh WhWhWh

h[0] h[1] h[2] h[3] h[4]

ŷ = p(x5 |x1, …, x4)

x2x1 x3 x4

Wy
wall

building

was

