Statistical Natural Language Processing [COMP0087]

Vasileios Lampos

Computer Science, UCL

Word embeddings

- In this lecture:
 - Sparse and dense vector space representations for words word2vec with skip-gram (and negative sampling)
- **Reading / Lecture based on:** Chapter 6 of "Speech and Language Processing" (SLP) by Jurafsky and Martin (2023) — web.stanford.edu/~jurafsky/slp3/
- Clipped slides: lampos.net/teaching
- Additional material
 - word2vec See arxiv.org/abs/1301.3781 and proceedings.neurips.cc/paper/2013/file/ *9aa42b31882ec039965f3c4923ce901b-Paper.pdf

* probabilistic topic models — see youtube.com/watch?v=yK7nN3FcgUs

- Specify word co-occurrence context window in a corpus
- \blacktriangleright +/ 4 words around the target word is a common setting

"Another Brick in the Wall" part 2 is a Pink Floyd song from "The Wall" album that was released as a single in 1979 and while it was banned by at least one authoritarian regime, it managed to sell more than 4 million copies worldwide.

- Specify word co-occurrence context window in a corpus
- \blacktriangleright +/ 4 words around the target word is a common setting

"Another Brick in the Wall" part 2 is a Pink Floyd song from "The Wall" album that was released as a single in 1979 and while it was banned by at least one authoritarian regime, it managed to sell more than 4 million copies worldwide.

\blacktriangleright short context window \rightarrow syntax / grammar aware representation

- Specify word co-occurrence context window in a corpus \blacktriangleright +/ - 4 words around the target word is a common setting \blacktriangleright short context window \rightarrow syntax / grammar aware representation \blacktriangleright long context window \rightarrow more abstraction / meaning / semantics

"Another Brick in the Wall" part 2 is a Pink Floyd song from "The Wall" album that was released as a single in 1979 and while it was banned by at least one authoritarian regime, it managed to sell more than 4 million copies worldwide.

Word co-occurrence matrix

COMP0087 - Word embeddings

 $\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|}$

context windows

COMP0087 - Word embeddings

Word co-occurrence matrix $\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|}$

given a corpus, count the amount of times words co-occur within the specified

Word co-occurrence matrix

- context windows
- generates primitive word embeddings

COMP0087 - Word embeddings

given a corpus, count the amount of times words co-occur within the specified

Word co-occurrence matrix

- context windows
- generates primitive word embeddings
- sparse representation, sparser for shorter context windows
- high dimensional representation; depends on vocabulary size, $|\mathcal{V}|$

given a corpus, count the amount of times words co-occur within the specified

Word co-occurrence matrix

Word embeddings by counting – Pointwise Mutual Information (PMI)

 $\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|}$

Word co-occurrence matrix Word context matrix

Word embeddings by counting – Pointwise Mutual Information (PMI)

 $\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|}$ $\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, \, d < |\mathcal{V}|$

Word co-occurrence matrix Word context matrix

Pointwise Mutual Information (PMI) How often 2 events (in NLP: words!) co-occur compared to our

Word embeddings by counting – Pointwise Mutual Information (PMI)

 $\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|}$ $\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, d < |\mathcal{V}|$

expectation under the assumption that these events were independent

Word co-occurrence matrix Word context matrix

- Pointwise Mutual Information (PMI) How often 2 events (in NLP: words!) co-occur compared to our
- For a target word w_i and a context word c_i

 $PMI(w_i, c_i)$

COMP0087 - Word embeddings

Word embeddings by counting – Pointwise Mutual Information (PMI)

 $\mathbf{C} \in \mathbb{N}^{|\mathcal{V}| \times |\mathcal{V}|}$ $\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, d < |\mathcal{V}|$

expectation under the assumption that these events were independent

$$= \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

if \log_2 , then the units are bits!

 $PMI(w_i, c_j) = \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$

 $PMI(w_i, c_j)$

- PMI ranges in $(-\infty, +\infty)$
- $log(\cdot)$ shrinks the range

$$= \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

PMI identifies strongly associated words even when less frequent

 $PMI(w_i, c_i)$

- PMI identifies strongly associated words even when less frequent
- PMI ranges in $(-\infty, +\infty)$
- $log(\cdot)$ shrinks the range
- Negative PMI values are harder to interpret and evaluate - "relatedness" is more comprehensive / objective
- Force positivity Positive PMI (PPMI)

 $PPMI(w_i, c_j) =$

$$= \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

$$\max\left(\mathrm{PMI}(w_i,c_j),\,0\right)$$

Word context matrix

$$PMI(w_i, c_j) = \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

 $\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, \, d < |\mathcal{V}|$

$$PPMI(w_i, c_j) = \max\left(PMI(w_i, c_j), 0\right)$$

Word context matrix

$$PMI(w_i, c_j) = \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

$$p(w_{i}, c_{j}) = \frac{q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{d} q_{ij}}$$

$$\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, \, d < |\mathcal{V}|$$

$$\frac{P}{(c_j)} \quad \text{PPMI}(w_i, c_j) = \max\left(\text{PMI}(w_i, c_j), 0\right)$$

number of times w_i co-occurs with c_j divided by the total word count in ${f Q}$

Word context matrix

$$PMI(w_i, c_j) = \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

$$p(w_{i}, c_{j}) = \frac{q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{d} q_{ij}}$$

sum of *i*-th
row of **Q**
$$p(w_i) = \frac{\sum_{j=1}^d q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^d q_{ij}}$$

COMP0087 - Word embeddings

$$\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, \, d < |\mathcal{V}|$$

$$PPMI(w_i, c_j) = \max\left(PMI(w_i, c_j), 0\right)$$

number of times w_i co-occurs with c_j divided by the total word count in **Q**

Word context matrix

$$PMI(w_i, c_j) = \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

$$p(w_{i}, c_{j}) = \frac{q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{d} q_{ij}}$$

sum of *i*-th
row of **Q**
$$p(w_i) = \frac{\sum_{j=1}^d q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^d q_{ij}}$$

COMP0087 - Word embeddings

$$\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, \, d < |\mathcal{V}|$$

$$PPMI(w_i, c_j) = \max\left(PMI(w_i, c_j), 0\right)$$

number of times w_i co-occurs with c_j divided by the total word count in \mathbf{Q}

$$p(c_j) = \frac{\sum_{i=1}^{|\mathcal{V}|} q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{d} q_{ij}}$$
sum of *j*-th
column of **Q**

Word context matrix

$$PMI(w_i, c_j) = \log \frac{p(w_i, c_j)}{p(w_i) \cdot p(c_j)}$$

$$p(w_{i}, c_{j}) = \frac{q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{d} q_{ij}}$$

sum of *i*-th
row of **Q**
$$p(w_i) = \frac{\sum_{j=1}^d q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^d q_{ij}}$$

$$\mathbf{Q} \in \mathbb{N}^{|\mathcal{V}| \times d}, \ d < |\mathcal{V}|$$

replace with

$$PPMI(w_i, c_j) = max \left(PMI(w_i, c_j), 0\right)$$

number of times w_i co-occurs with c_j divided by the total word count in ${f Q}$

$$p(c_j) = \frac{\sum_{i=1}^{|\mathcal{V}|} q_{ij}}{\sum_{i=1}^{|\mathcal{V}|} \sum_{j=1}^{d} q_{ij}}$$
sum of *j*-th
column of **Q**

- dense word embedding
- commonly, k = 128 to 1024, i.e. \mathbf{u}_i is short and dense
- matrices Σ and V are (or could be) thrown away

 $\mathbf{u}_i: k$ -dimensional vector that represents word i in our vocabulary

- dense word embedding
- commonly, k = 128 to 1024, i.e. \mathbf{u}_i is short and dense
- matrices Σ and \mathbf{V} are (or could be) thrown away

 $\mathbf{u}_i: k$ -dimensional vector that represents word i in our vocabulary

- dense word embedding
- commonly, k = 128 to 1024, i.e. \mathbf{u}_i is short and dense - matrices Σ and \mathbf{V} are (or could be) thrown away

 $\mathbf{u}_i: k$ -dimensional vector that represents word i in our vocabulary

- dense word embedding
- commonly, k = 128 to 1024, i.e. \mathbf{u}_i is short and dense - matrices Σ and V are (or could be) thrown away
- **Downsides:** SVD has a significant computational cost, $\mathcal{O}(|\mathcal{V}| \cdot d \cdot k^2)$ No intuition — what do the SVD embeddings represent?

 $\mathbf{u}_i: k$ -dimensional vector that represents word i in our vocabulary

The NLP view (for this lecture)

COMP0087 - Word embeddings

11

The NLP view (for this lecture)

COMP0087 - Word embeddings

11

- word and context pairs, shifted by a global constant

COMP0087 - Word embeddings

Interesting to know: A variant of word2vec (skip-gram with negative) sampling that will see next) is implicitly factorising a word-context matrix, whose cells are the pointwise mutual information (PMI) of the respective

More in papers.nips.cc/paper_files/paper/2014/file/feab05aa91085b7a8012516bc3533958-Paper.pdf

... said that "Hey Jude" is Beatles' most famous song, but...

... said that "Hey Jude" is **Beatles**' most famous song, but...

centre word

COMP0087 - Word embeddings

 W_t

Word embeddings by prediction

Word embeddings by prediction

Prediction tasks

$$p(\mathbf{c} | w_t) = ?$$

or
$$p(w_t | \mathbf{c}) = ?$$

Word embeddings by prediction

Prediction tasks

 $p(\mathbf{c} | w_t) = ?$ $p(w_t | \mathbf{c}) = ?$

Continuous Bag of Words (CBOW)

COMP0087 - Word embeddings

17

word2vec – Continuous Bag of Words (CBOW)

Text window: [Hey, Jude, is, Beatles, most, famous, song]

word2vec – Continuous Bag of Words (CBOW)

What do *n* and *d* denote?

Text window: [Hey, Jude, is, Beatles, most, famous, song]

word2vec – Continuous Bag of Words (CBOW)

Text window: [Hey, Jude, is, Beatles, most, famous, song]

Text window: [Hey, Jude, is, Beatles, most, famous, song]

COMP0087 - Word embeddings

word2vec — Target and context word embeddings

context word
$$i \to \mathbf{c}_i \in \mathbb{R}^d$$

target word $j \to \mathbf{u}_j \in \mathbb{R}^d$

COMP0087 - Word embeddings

 W_1, W_2, \ldots, W_T

How big is T?

 W_1, W_2, \ldots, W_T

How big is T?

 $W_1, W_2, ..., W_T$

if our context radius L = 2 and our target word is w_t

skip-gram aims to maximise this

Imagine our corpus is a sequence of T tokens

How big is T?

 W_1, W_2, \ldots, W_T

if our context radius L = 2 and our target word is w_t

 $p(w_{t-2} | w_t) \cdot p(w_{t-1} | w_t) \cdot p(w_{t+1} | w_t) \cdot p(w_{t+2} | w_t)$

skip-gram aims to maximise this words are independent from each other $p(w_{t-2} | w_t) \cdot p(w_{t-1} | w_t) \cdot p(w_{t+1} | w_t) \cdot p(w_{t+2} | w_t)$

Imagine our corpus is a sequence of T tokens

How big is T?

 W_1, W_2, \ldots, W_T

if our context radius L = 2 and our target word is w_t

if our context radius L = 2 and our target word is w_t

skip-gram aims to maximise this words are independent from each other $p(w_{t-2} | w_t) \cdot p(w_{t-1} | v_t)$

Imagine our corpus is a sequence of T tokens

 W_1, W_2, \ldots, W_T

$$w_t) \cdot p(w_{t+1} \mid w_t) \cdot p(w_{t+2} \mid w_t)$$

Does it matter if a word comes before or after w_t ?

How big is T?

skip-gram aims to maximise this words are independent from each other $p(w_{t-2} | w_t) \cdot p(w_{t-1} | v_t)$

COMP0087 - Word embeddings

Imagine our corpus is a sequence of T tokens

 W_1, W_2, \ldots, W_T

if our context radius L = 2 and our target word is w_t

$$w_t) \cdot p(w_{t+1} \mid w_t) \cdot p(w_{t+2} \mid w_t)$$

$$\int_{i\neq 0} p(w_{t-i} \mid w_t)$$

How big is
$$T$$
?

Imagine our corpus is a sequence of T tokens

for one context window

 W_1, W_2, \ldots, W_T

Imagine our corpus is a sequence of T tokens

for one context window

across the entire corpus

 W_1, W_2, \ldots, W_T

Imagine our corpus is a sequence of T tokens

 W_1, W_2, \ldots, W_T

Imagine our corpus is a sequence of T tokens

let's work with the log

COMP0087 - Word embeddings

 W_1, W_2, \ldots, W_T

Imagine our corpus is a sequence of T tokens

 W_1, W_2, \ldots, W_T

COMP0087 - Word embeddings

Imagine our corpus is a sequence of T tokens

COMP0087 - Word embeddings

 $W_1, W_2, ..., W_T$

$$\prod_{-L, i \neq 0}^{L} p(w_{t-i} | w_t) = \max \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p(w_{t-i} | w_t) \right)$$

Imagine our corpus is a sequence of T tokens

let's work with the log

 W_1, W_2, \ldots, W_T

$$\prod_{t=-L, i\neq 0}^{L} p(w_{t-i} | w_t) = \max \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i\neq 0}^{L} \log \left(p(w_{t-i} | w_t) \right)$$

Imagine our corpus is a sequence of T tokens

minimise this

 W_1, W_2, \ldots, W_T

$$\prod_{t=-L, i\neq 0}^{L} p(w_{t-i} | w_t) = \max \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i\neq 0}^{L} \log \left(p(w_{t-i} | w_t) \right)$$

$$\log\left(p(w_{t-i} \mid w_t)\right)$$

Imagine our corpus is a sequence of T tokens

- How do we learn word embeddings from this?

COMP0087 - Word embeddings

 W_1, W_2, \ldots, W_T

$$\prod_{t=L, i\neq 0}^{L} p(w_{t-i} | w_t) = \max \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i\neq 0}^{L} \log \left(p(w_{t-i} | w_t) \right)$$

$$\log\left(p(w_{t-i} \,|\, w_t)\right)$$

What are we minimising this against? Parameters of the model?

Imagine our corpus is a sequence of T tokens

COMP0087 - Word embeddings

 W_1, W_2, \ldots, W_T

$$\sum_{-L, i\neq 0}^{L} \log \left(p(w_{t-i} | w_t) \right)$$

target word

 $p(w_{t-i} | w_t)$ $/ \qquad / \qquad \\ \text{context word} \qquad \text{target word}$

 $p(w_{t-i} | w_t)$ context word target word

Context word w_{t-i} is vocabulary word $c \in \mathcal{V}$ $\mathbf{c} \in \mathbb{R}^{1 \times d}$ that has an embedding assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

context word

Context word w_{t-i} is vocabulary word $c \in \mathcal{V}$ $\mathbf{c} \in \mathbb{R}^{1 \times d}$ that has an embedding assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

 $p(w_{t-i} | w_t) = p(c | u)$

target word

 $u \in \mathcal{V}$ Target word W_t is $\mathbf{u} \in \mathbb{R}^{d \times 1}$ with an embedding $\mathbf{U} \in \mathbb{R}^{d \times n}$ assuming embedding matrix

context word

Context word w_{t-i} is vocabulary word $c \in \mathcal{V}$ $\mathbf{c} \in \mathbb{R}^{1 \times d}$ that has an embedding assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

> $sim(w_{t-1}, w_t) = sim(c, u) = \mathbf{c} \cdot \mathbf{u}$ dot product!

 $p(w_{t-i} | w_t) = p(c | u)$

target word

Target word W_t is $u \in \mathcal{V}$ $\mathbf{u} \in \mathbb{R}^{d \times 1}$ with an embedding $\mathbf{U} \in \mathbb{R}^{d \times n}$ assuming embedding matrix

context word

Context word w_{t-i} is vocabulary word $c \in \mathscr{V}$ that has an embedding $\mathbf{c} \in \mathbb{R}^{1 \times d}$ assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

 $sim(w_{t-1}, w_t)$

 $p(c \mid u) =$

COMP0087 - Word embeddings

$$p(w_{t-i} | w_t) = p(c | u)$$

target word

Target word w_t is $u \in \mathcal{V}$ $I \times d$ with an embedding $\mathbf{u} \in \mathbb{R}^{d \times 1}$ $n \times d$ assuming embedding matrix $\mathbf{U} \in \mathbb{R}^{d \times n}$

$$\mathbf{s} = sim(c, u) = \mathbf{c} \cdot \mathbf{u}$$
 dot product!

$$\frac{\exp(\mathbf{c} \cdot \mathbf{u})}{\sum_{\mathbf{c}_k \in \mathbf{C}} \exp(\mathbf{c}_k \cdot \mathbf{u})}$$

normalise using softmax

context word

Context word w_{t-i} is vocabulary word $c \in \mathscr{V}$ that has an embedding $\mathbf{c} \in \mathbb{R}^{1 \times d}$ assuming context embedding matrix $\mathbf{C} \in \mathbb{R}^{n \times d}$

 $sim(w_{t-1}, w_t)$

Is it expensive to compute the denominator of this?

 $p(c \mid u) =$

COMP0087 - Word embeddings

$$p(w_{t-i} | w_t) = p(c | u)$$

 $\mathbf{\Lambda}$

target word

Target word w_t is $u \in \mathcal{V}$ $I \times d$ with an embedding $\mathbf{u} \in \mathbb{R}^{d \times 1}$ $n \times d$ assuming embedding matrix $\mathbf{U} \in \mathbb{R}^{d \times n}$

$$\mathbf{s} = sim(c, u) = \mathbf{c} \cdot \mathbf{u}$$
 dot product!

$$\exp(\mathbf{c} \cdot \mathbf{u})$$

$$\sum_{\mathbf{c}_k \in \mathbf{C}} \exp(\mathbf{c}_k \cdot \mathbf{u})$$

normalise using softmax

$$W_1, W_2, \ldots, W_T$$

$$\min - \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p(w_{t-i} | w_t) \right)$$

word2vec – skip-gram

$$W_1, W_2, \ldots, W_T$$

$$\min - \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p(w_{t-i} | w_t) \right)$$

let's insert the previous information

word2vec – skip-gram

$$w_{1}, w_{2}, \dots, w_{T}$$

$$\min - \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p(w_{t-i} | w_{t}) \right)$$

$$\begin{bmatrix} \text{let's insert the} \\ \text{previous information} \end{bmatrix}$$

$$pt. \text{ task: } \arg \min_{\mathbf{C}, \mathbf{U}} - \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(\frac{\exp \left(\frac{e^{2} \sum_{j=1}^{n} e^{2} \sum_{j=1}^{n} e^{2} \right)}{\sum_{j=1}^{n} e^{2} \sum_{j=1}^{n} e^$$

 \mathbf{O}

COMP0087 - Word embeddings

word2vec – skip-gram

$$exp\left(\mathbf{c}_{w_{t-i}}\cdot\mathbf{u}_{w_{t}}\right)$$

Imagine our corpus is a sequence of T tokens

$$w_{1}, w_{2}, \dots, w_{T}$$

$$\min - \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(p(w_{t-i} | w_{t}) \right)$$

$$\begin{bmatrix} \text{let's insert the} \\ \text{previous information} \end{bmatrix}$$

$$pt. \text{ task:} \quad \arg \min_{\substack{\text{C},\text{U} \\ \text{/}}} - \frac{1}{T} \sum_{t=1}^{T} \sum_{i=-L, i \neq 0}^{L} \log \left(\frac{\exp \left(\frac{e^{x_{T}}}{\sum_{j=1}^{n}} \right) \right)$$

$$\lim_{\substack{\text{embedding} \\ \text{matrices}}} \left(\frac{e^{x_{T}}}{\sum_{j=1}^{n}} \right)$$

O

COMP0087 - Word embeddings

word2vec – skip-gram

ranks all words in the vocabulary in terms of their probability of being within the context window

too expensive!!!

Given a target word *u* and another word *v* model the probability of u and v appearing in the same context \implies binary classification

Solution: Let's change the objective function by using "negative sampling"!

Solution: Let's change the objective function by using "negative sampling"!

Given a target word *u* and another word *v* model the probability of u and v appearing in the same context \implies binary classification they appear in the same context $p(D = 1 | v, u) = \sigma(v)$

$$\mathbf{v}(\mathbf{v} \cdot \mathbf{u}) = \frac{1}{1 + \exp(-\mathbf{v} \cdot \mathbf{u})}$$

Solution: Let's change the objective function by using "negative sampling"!

Given a target word *u* and another word *v* model the probability of u and v appearing in the same context \implies binary classification

$$(\mathbf{v} \cdot \mathbf{u}) = \frac{1}{1 + \exp(-\mathbf{v} \cdot \mathbf{u})}$$

 $p(D = 0 | v, u) = 1 - p(D = 1 | v, u) = 1 - \sigma(\mathbf{v} \cdot \mathbf{u}) = \sigma(-\mathbf{v} \cdot \mathbf{u})$

where \mathscr{D} holds all target-context word pairs in our corpus

COMP0087 - Word embeddings

$$\int_{a} p(D = 1 | c, u)$$

where \mathscr{D} holds all target-context word pairs in our corpus

 $\arg \max_{\mathbf{C},\mathbf{U}} \prod_{(\alpha,\mathbf{u})\in\mathcal{O}} \sigma(\mathbf{c}\cdot\mathbf{u})$

COMP0087 - Word embeddings

$$\int_{a} p(D = 1 | c, u)$$

where \mathcal{D} holds all target-context word pairs in our corpus

 $\underset{\mathbf{C},\mathbf{U}}{\operatorname{arg\,max}} \prod_{\{c,u\}\in \mathscr{D}} \sigma(\mathbf{c}\cdot\mathbf{u}) \xrightarrow{\operatorname{log}(\cdot)}$

COMP0087 - Word embeddings

$$\int_{\substack{a \in \mathscr{D}}} p(D = 1 \mid c, u)$$

$$g(\cdot)$$

where \mathscr{D} holds all target-context word pairs in our corpus

 $\underset{\mathbf{C},\mathbf{U}}{\operatorname{arg\,max}} \prod_{\{c,u\}\in\mathscr{D}} \sigma(\mathbf{c}\cdot\mathbf{u}) \qquad \frac{\log}{---}$

COMP0087 - Word embeddings

$$\int_{a} p(D = 1 | c, u)$$

$$\underbrace{g(\cdot)}{\longrightarrow} \quad \arg\max_{\mathbf{C},\mathbf{U}} \sum_{\{c,u\}\in\mathscr{D}} \log(\sigma(\mathbf{c}\cdot\mathbf{u}))$$

u is our target word and *c* a context word

 $\underset{C,U}{\operatorname{arg\,max}} \sum_{\{c,u\}\in\mathscr{D}} \log(\sigma(\mathbf{c}\cdot\mathbf{u}))$

 $\arg \max_{\mathbf{C},\mathbf{U}} \mathbf{z}_{\{c,u\}}$

u is our target word and *c* a context word

$$\sum_{u \in \mathscr{D}} \log(\sigma(\mathbf{c} \cdot \mathbf{u}))$$

but an undesirable setting that maximises this function is...

 $\underset{C,U}{\operatorname{arg\,max}} \underbrace{\mathcal{L}}_{\{c,u\}}$

COMP0087 - Word embeddings

u is our target word and *c* a context word

$$\sum_{u \in \mathscr{D}} \log(\sigma(\mathbf{c} \cdot \mathbf{u}))$$

- but an undesirable setting that maximises this function is...
 - $\mathbf{c} = \mathbf{u}^{\mathsf{T}}$ and $\mathbf{c} \cdot \mathbf{u} = k$, where $k \geq 40$

 $\arg \max_{\mathbf{C},\mathbf{U}} \mathbf{z}_{\{c,u\}}$

 $\mathbf{c} = \mathbf{u}^{\mathsf{T}}$ and $\mathbf{c} \cdot \mathbf{u} = k$, where $k \ge 40$

COMP0087 - Word embeddings

u is our target word and *c* a context word

$$\sum_{u \in \mathscr{D}} \log(\sigma(\mathbf{c} \cdot \mathbf{u}))$$

but an undesirable setting that maximises this function is...

 $\implies \sigma(\mathbf{c} \cdot \mathbf{u}) = \sigma(40) \approx 1$ logistic sigmoid's max value

u is our target word and *c* a context word

 $\underset{C,U}{\operatorname{arg\,max}}$

Fix: generate random pairs (\mathscr{D}') and consider them as "*negative*" target-context pairs

$$\sum_{u\}\in\mathscr{D}}\log(\sigma(\mathbf{c}\cdot\mathbf{u}))$$

$$(\cdot \mathbf{u})) + \sum_{\{c,u\}\in \mathcal{D}'} \log(\sigma(-\mathbf{c} \cdot \mathbf{u}))$$

u is our target word and *c* a context word

 $\underset{C,U}{\operatorname{arg\,max}} \operatorname{\mathsf{L}}_{\{c,u\}}$

COMP0087 - Word embeddings

$$\sum_{u\}\in\mathscr{D}}\log(\sigma(\mathbf{c}\cdot\mathbf{u}))$$

Fix: generate random pairs (\mathscr{D}') and consider them as "*negative*" target-context pairs

$$(\mathbf{c} \cdot \mathbf{u}) + \sum_{\{c,u\} \in \mathscr{D}'} \log(\sigma(-\mathbf{c} \cdot \mathbf{u}))$$
$$(\mathbf{c} \cdot \mathbf{u}) + \sum_{\{c,u\} \in \mathscr{D}'} \log(\sigma(-\mathbf{c} \cdot \mathbf{u}))$$

Logistic cross-entropy loss $L_{Ce} = -$

$$\left[\log(\sigma(\mathbf{c}\cdot\mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i}\cdot\mathbf{u}))\right]$$

Logistic cross-entropy loss $L_{Ce} = -$

k + 1 context word embeddings

 $\frac{\partial L_{ce}}{\partial c} = ?$

target word embedding

COMP0087 - Word embeddings

$$\left[\log(\sigma(\mathbf{c}\cdot\mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i}\cdot\mathbf{u}))\right]$$

$$\frac{\partial L_{\mathsf{C}\mathsf{e}}}{\partial \mathbf{h}_i} = ?$$

$$\frac{L_{ce}}{\partial \mathbf{u}} = ?$$

$$L_{ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

$$\frac{\partial L_{ce}}{\partial \mathbf{c}} =$$

$$L_{ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

$$\frac{\partial L_{ce}}{\partial \mathbf{c}} =$$

$$L_{ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k} \log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

COMP0087 - Word embeddings

Suppose we have a target word *u*, a valid context word *c*, and k noise words $h_i, i \in \{1, ..., k\}$ (negative samples) chosen randomly

chain rule...!

Suppose we have a target word *u*, a valid context we and *k* noise words
$$h_i$$
, $i \in \{1, ..., k\}$ (negative samples) choose $L_{Ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_i \cdot \mathbf{u}))\right]$

$$\frac{\text{reminder}}{\sigma(x)} = \sigma(x) \cdot (1 - \sigma(x))$$

$$\frac{\partial L_{Ce}}{\partial \mathbf{c}} = -\frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})} \cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot (1 - \sigma(\mathbf{c} \cdot \mathbf{u}))$$

COMP0087 - Word embeddings

word2vec — skip-gram with negative sampling

vord *C*, sen randomly

Suppose we have a target word *u*, a valid context we and *k* noise words
$$h_i$$
, $i \in \{1, ..., k\}$ (negative samples) chose $L_{CC} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_i \cdot \mathbf{u}))\right]$

$$\frac{ceminder}{\sigma(x)} = \sigma(x) \cdot (1 - \sigma(x))$$

$$\frac{\partial L_{CC}}{\partial \mathbf{c}} = \frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})} \cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot (1 - \sigma(\mathbf{c} \cdot \mathbf{u})) \cdot \mathbf{u}$$

COMP0087 - Word embeddings

word2vec — skip-gram with negative sampling

vord *c*, sen randomly

Suppose we have a target word *u*, a valid context we and *k* noise words
$$h_i$$
, $i \in \{1, ..., k\}$ (negative samples) chose $L_{CC} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_i \cdot \mathbf{u}))\right]$

$$\frac{ceminder}{\sigma(x)} = \sigma(x) \cdot (1 - \sigma(x))$$

$$\frac{\partial L_{CC}}{\partial \mathbf{c}} = -\frac{1}{\sigma(\mathbf{c} \cdot \mathbf{u})} \cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot (1 - \sigma(\mathbf{c} \cdot \mathbf{u})) \cdot \mathbf{u}$$

COMP0087 - Word embeddings

word2vec — skip-gram with negative sampling

vord *c*, sen randomly

 $L_{ce} = - \log(\sigma(\mathbf{c} \cdot \mathbf{c}))$ reminder $\frac{d\sigma(x)}{dx} = \sigma(x) \cdot \left(1 - \sigma(x)\right)$ $\frac{\partial L_{ce}}{\partial c} = -\frac{1}{\sigma(c \cdot \mathbf{u})}$ $= (\sigma(\mathbf{c} \cdot \mathbf{u}) - 1) \cdot \mathbf{u}$

COMP0087 - Word embeddings

word2vec — skip-gram with negative sampling

Suppose we have a target word *u*, a valid context word *c*, and k noise words $h_i, i \in \{1, \dots, k\}$ (negative samples) chosen randomly

$$\mathbf{u})\big) + \sum_{i=1}^{k} \log\big(\sigma(-\mathbf{h}_i \cdot \mathbf{u})\big)\bigg]$$

chain rule...!

$$\cdot \sigma(\mathbf{c} \cdot \mathbf{u}) \cdot (1 - \sigma(\mathbf{c} \cdot \mathbf{u})) \cdot \mathbf{u}$$

$$L_{ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

$$L_{ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

$$\frac{\partial L_{ce}}{\partial \mathbf{h}_i} = ?$$

$$L_{ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

$$\frac{\partial L_{ce}}{\partial \mathbf{h}_i} = ? =$$

Suppose we have a target word *u*, a valid context word *c*, and k noise words $h_i, i \in \{1, ..., k\}$ (negative samples) chosen randomly

 $\sigma(\mathbf{h}_i \cdot \mathbf{u}) \cdot \mathbf{u}$

$$L_{ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k}\log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

$$\frac{\partial L_{ce}}{\partial \mathbf{h}_i} = ? =$$

$$\frac{\partial L_{ce}}{\partial \mathbf{u}} = \left(\sigma(\mathbf{c} \cdot \mathbf{u}) - 1\right)\mathbf{c} + \sum_{i=1}^{k} \left(\sigma(\mathbf{h}_{i} \cdot \mathbf{u}) \cdot \mathbf{h}_{i}\right)$$

COMP0087 - Word embeddings

Suppose we have a target word *u*, a valid context word *c*, and k noise words $h_i, i \in \{1, ..., k\}$ (negative samples) chosen randomly

 $\sigma(\mathbf{h}_i \cdot \mathbf{u}) \cdot \mathbf{u}$

$$L_{Ce} = -\left[\log(\sigma(\mathbf{c} \cdot \mathbf{u})) + \sum_{i=1}^{k} \log(\sigma(-\mathbf{h}_{i} \cdot \mathbf{u}))\right]$$

$$\mathbf{u}_{t+1} = \mathbf{u}_t - \alpha \left[\left(\sigma(\mathbf{c}_t \cdot \mathbf{u}_t) - 1 \right) \mathbf{c}_t + \sum_{i=1}^k \left(\sigma(\mathbf{h}_{i;t} \cdot \mathbf{u}_t) \cdot \mathbf{h}_{i;t} \right) \right]$$

Suppose we have a target word *u*, a valid context word *c*, and k noise words $h_i, i \in \{1, \dots, k\}$ (negative samples) chosen randomly

$$\bigg)_{t} = \mathbf{c}_{t} - \alpha \left(\sigma(\mathbf{c}_{t} \cdot \mathbf{u}_{t}) - 1 \right) \cdot \mathbf{u}_{t}$$

gradient descent with learning rate α

word2vec 2D projections

Twitter ("X") based (1.1 billion tweets) skip-gram word embeddings with 512 dimensions and negative sampling with 10 noise words

40

thanks thank welcome hello eaayd birthday happy dear lucky proud luck 20 perfect amazing loveying beautiful farbastant love hopefullv fri**ðriets**d enjoy familybrother lovely great sweet little nice good much cute_{cool} younko∰ds baby interesting well ha lots babe youve some^{many} bo<mark>ys</mark> girls real^{true} funny worth super verpretty 10 those weird crazy different same oth girl woman poor ones them stupid quite **blace** thetheir hate theyre bitch shes un youre mine were mate fine e okayhahayeah shit damn course he^{fµck} thats anywav e alsowhichnly fugkingy sorry dead that just definiter oughserifesty absolutely either literally still like abc aybe least even enouganymore what such favouritemost worst eveneverways exactlywhats head wrong face eyes hair think WOESE sometimes agree know reasoproblem understand care thans heart life rather believe stuffing ideavonder -10 re **foegeb**er Desemble imagine everythsionggething anything without migh everyone should could would else angoneone will carandtouldnt would ntont didnt nyngvsæstelf doeset -20 wasnt isnt aint feeding seems soandindisoks -30 -30 -20 -10

figshare.com/articles/dataset/UK_Twitter_word_embeddings_II_/5791650

COMP0087 - Word embeddings

si

	pressi	ure rising falling gust slowly ometer.							
	bạr	gust slowly ometerty mperavire							
	te								
		rain weather							
		cold outsi	do						
bored sick ^{lifed} sleep		Outsi							
	h	igh	raonse	e party din f ዋ	drink Spå				
	lætærly	s chule ge class		P 0 1					
busy	·	01033	mornina	christmas					
long	ready	nic	·	christmas Holiday	, ticket	c			
	excited wait		ight sui setay ro orrownofniday	ageekendmme	r	0			
hally	waiting	later		week vear month					
Whole	appind	next		days months	çs	train	street		
vent	aroum		oday yesterday	hours houminutes			park town city		ester
anothe	r intrough	wn home I	ast	half		running	Wes	st liverpo united en arsenal	ol Igland
every each together	j ele	back again	oast		www.king			arsenal	5
logeniei	over under Imost	utiltii	first firstcond	ward			line team	league	
both etween _{alre} ave	ady while	hataraalmaa		oppeen	money	business	season †	ootballaye	rs ns
withfromwo		en time once chanc times	break	- 1	side		final materi	anes	
′ this t whereher when	(e	times		d lệ	ft ave		b 5 - 0		
when ^{out} because fact plus	th theres pl	ace been	lost		move		ag aires t	playlayed playing	
fact plus	par mom	ent gon	е	keep	deal	fraa			
your	question	doluge	finis	edt stop	si	free g j qin			
more	hease he	aving	st	arting		meet	ligheow		
mindfollow		getting	ent		hel ^{gupøøi}	ŧ	online		
m sa ns fo	lowed gogonia	getsgoes we comesa		king		news	Oninte	fố	Howe rs
lets		e comi	he	foinn	nd		+	twitter	
gotta	trying able		bring _{urn}		check	full	post	twitter v avg ets	
wanna needwant needs _{wants} wante	used d	ma keskiak e måde	give	seeina					
			send	seeing wa wa	atched	readingo	k		
	says _{saidt} old tel saying	I	toxt	seen			story film		
thought wish thi	nkingtalking	called	text phone		ar lishte	amg			
ream		numt name	ber			s oll aum music	videa		
	_								
h chang	appenned e	Words		poste picture	d				
			10	picture	20	0		30	

word2vec 2D projections

Twitter ("X") based (1.1 billion tweets) skip-gram word embeddings with 512 dimensions and negative sampling with 10 noise words

figshare.com/articles/dataset/UK_Twitter_word_embeddings_II_/5791650

Word analogies: The infamous "king — man + woman ≈ queen"

NB

Word embeddings tend to carry the biases or stereotypes of the corpora used to train them!

vector('queen') \approx vector('king') – vector('man') + vector('woman')

Word analogies: The infamous "king — man + woman ≈ queen"

NB

Word embeddings tend to carry the biases or stereotypes of the corpora used to train them!

b \mathcal{A}

 b_p a_p vector('queen') \approx vector('king') - vector('man') + vector('woman')

Word analogies: The infamous "king — man + woman ≈ queen"

NB

Word embeddings tend to carry the biases or stereotypes of the corpora used to train them!

COMP0087 - Word embeddings

cosine similarity between 'queen' and 'king' - 'man' + 'woman'

$$s\left(\mathbf{u}_{b},\mathbf{u}_{a}-\mathbf{u}_{a_{p}}+\mathbf{u}_{b_{p}}\right)\right)$$

Compute cosine similarity between the composite embedding $(\mathbf{u}_a - \mathbf{u}_{a_p} + \mathbf{u}_{b_p})$ and each other word embedding in our vocabulary; expect that $\mathbf{u}_{b} = \operatorname{vector}(\mathbf{u}_{a} - \mathbf{u}_{b})$ will have the greatest one.

NB

Word embeddings tend to carry the biases or stereotypes of the corpora used to train them!

This gives rise to the word analogy

cosine similarity between 'queen' and 'king' - 'man' + 'woman'

$$s\left(\mathbf{u}_{b},\mathbf{u}_{a}-\mathbf{u}_{a_{p}}+\mathbf{u}_{b_{p}}\right)\right)$$

Compute cosine similarity between the composite embedding $(\mathbf{u}_a - \mathbf{u}_{a_p} + \mathbf{u}_{b_p})$ and each other word embedding in our vocabulary; expect that $\mathbf{u}_{b} = \operatorname{vector}(\mathbf{u}_{a} - \mathbf{u}_{b})$ will have the greatest one.

> a_n is for a, what b_n is for bor 'man' is for 'king', what 'woman' is for 'queen'

Word analogies: The infamous "king - man + woman \approx queen"

NB

Word embeddings tend to carry the biases or stereotypes of the corpora used to train them!

This gives rise to the word analogy

 a_n is for a, what b_n is for bor 'man' is for 'king', what 'woman' is for 'queen'

Top-5 most similar words using cosine similarity on word embeddings

- Monday: Tuesday, Thursday, Wednesday, Friday, Sunday
- January: February, August, October, March, June
- red: yellow, blue, purple, pink, green
- ► we: they, you, we've, our, us
- espresso: expresso, cappuccino, macchiato, latte, coffee
- Iinux: Unix, Centos, Debian, Ubuntu, Redhat
- democracy: democratic, dictatorship, democracies, socialism, undemocratic
- Ioool: loool, lool, loooool, looooool, looooool
- enviroment: environment, environments, env, enviro, habitats

Twitter word embeddings – Analogies

she is to her what he is to ...

she is to her what he is to ... [his, him, himself]

COMP0087 - Word embeddings

41

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]
- go is for went what do is to... [did, doing, happened]

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]
- go is for went what do is to... [did, doing, happened]
- **big** is to **bigger** what **small** is to... [**smaller**, larger, tiny]

- she is to her what he is to ... [his, him, himself]
- Rome is to Italy what London is to ... [UK, Denmark, Sweden]
- go is for went what do is to... [did, doing, happened]
- **big** is to **bigger** what **small** is to... [**smaller**, larger, tiny]
- **poet** is to **poem** what **author** is to... [**novel**, excerpt, memoir]

Intrinsic

- Easy, given, no need for additional effort Based on theoretical properties (linguistics), not always indicative of actual
- performance
- Word vector analogies (seen in previous slides)
- ► WordSim-353, SimLex-999 word similarity by humans vs. trained word embeddings

Extrinsic

- Based on a downstream machine learning application (classification, regression)
- Not always easy or given \implies significant effort
- Is it the fault of the word embeddings or something else? Another sub-process that is failing, a task that is impossibly hard and so on. Requires an established, well-studied downstream task.

Intrinsic

- Easy, given, no need for additional effort Based on theoretical properties (linguistics), not always indicative of actual
- performance
- Word vector analogies (seen in previous slides)
- ► WordSim-353, SimLex-999 word similarity by humans vs. trained word embeddings

most important???

Extrinsic

- Based on a downstream machine learning application (classification, regression)
- Not always easy or given \implies significant effort
- Is it the fault of the word embeddings or something else? Another sub-process that is failing, a task that is impossibly hard and so on. Requires an established, well-studied downstream task.

Intrinsic

- Easy, given, no need for additional effort Based on theoretical properties (linguistics), not always indicative of actual
- performance
- Word vector analogies (seen in previous slides)
- ► WordSim-353, SimLex-999 word similarity by humans vs. trained word embeddings

most important???

Extrinsic

- Based on a downstream machine learning application (classification, regression)
- Not always easy or given \implies significant effort
- Is it the fault of the word embeddings or something else? Another sub-process that is failing, a task that is impossibly hard and so on. Requires an established, well-studied downstream task.

GloVe — aclanthology.org/D14-1162.pdf

- more optimisation functions?

$$\arg\min_{\mathbf{C},\mathbf{U}}\sum_{i\in\mathcal{V}}\sum_{j\in\mathcal{V}}f(x_{ij})\left(\mathbf{c}_{j}^{\mathsf{T}}\mathbf{u}_{i}+\beta_{i}+\gamma_{j}-\log(x_{ij})\right)^{2}$$

Global Vectors, uses ratios of probabilities from the word co-occurrence matrix • not a neural network, bilinear model, scalable fast, not the best evaluation

GloVe — aclanthology.org/D14-1162.pdf

- more optimisation functions?

$$\arg\min_{\mathbf{C},\mathbf{U}}\sum_{i\in\mathcal{V}}\sum_{j\in\mathcal{V}}f(x_{ij})\left(\mathbf{c}_{j}^{\mathsf{T}}\mathbf{u}_{i}+\beta_{i}+\gamma_{j}-\log(x_{ij})\right)^{2}$$

Global Vectors, uses ratios of probabilities from the word co-occurrence matrix • not a neural network, bilinear model, scalable fast, not the best evaluation

> How do word2vec and GloVe deal with unknown words?

GloVe — aclanthology.org/D14-1162.pdf

- more optimisation functions?

$$\arg\min_{\mathbf{C},\mathbf{U}}\sum_{i\in\mathcal{V}}\sum_{j\in\mathcal{V}}f(x_{ij})\left(\mathbf{c}_{j}^{\mathsf{T}}\mathbf{u}_{i}+\beta_{i}+\gamma_{j}-\log(x_{ij})\right)^{2}$$

fasttext — aclanthology.org/Q17-1010.pdf

- deals with unknown words
- ► a word is represented by itself plus sub-word *n*-grams

Global Vectors, uses ratios of probabilities from the word co-occurrence matrix • not a neural network, bilinear model, scalable fast, not the best evaluation

> How do word2vec and GloVe deal with unknown words?

e.g. "steely" \implies <steely>, <st, ste, tee, eel, ely, ly> by setting *n*-gram length to 3 < > special word boundaries to distinguish prefix / suffix, train with skip-gram known words are represented by the sum of all their sub-word embeddings • unknown words are represented by the sum of embeddings of sub-words

Connection between SVD and topic models

$$\sum_{i=1}^{N_j} \sum_{i=1}^{N_j} n(d_j, w_i) p(z_k | d_j, w_i)$$

$$\sum_{i=1}^{D} \sum_{j=1}^{N_j} \sum_{i=1}^{N_j} \sum_{j=1}^{N_j} \sum_{j=1}^{N_j$$

$$\sum_{j=1}^{j} \sum_{i=1}^{j} n(d_j, w_i)$$

Next lecture with me

- Friday, February 2
- Recurrent Neural Networks (for NLP)

