
Statistical Natural Language Processing [COMP0087]

Introduction to neural networks
and backpropagation

Vasileios Lampos
Computer Science, UCL

🖥 lampos.net

https://lampos.net

About this lecture

‣ In this lecture:
— Introductory neural network concepts
— Inference and training (backpropagation) with feedforward neural networks

‣ Reading / Lecture partly based on: Chapter 7 of “Speech and Language Processing”
(SLP) by Jurafsky and Martin (2023) — web.stanford.edu/~jurafsky/slp3/

‣ For those of you who want to have the slides in front of them during the lecture,
there is a clipped / early version at lampos.net/teaching (non clipped / slightly refined
version will be added after the lecture)

2COMP0087 - Introduction to neural networks and backpropagation

https://web.stanford.edu/~jurafsky/slp3/
https://www.lampos.net/teaching

The NLP view (for this lecture)

3

Encoder DecoderLarry Carlton is
captivating! +— Loss

f(x)

x
̂y y

dense

COMP0087 - Introduction to neural networks and backpropagation

The NLP view (for this lecture)

3

Encoder DecoderLarry Carlton is
captivating! +— Loss

f(x)

x
̂y y

dense
today, we are

going to be all over this,
forth and back…

COMP0087 - Introduction to neural networks and backpropagation

Ar$ficial neural networks — A few introductory remarks

4COMP0087 - Introduction to neural networks and backpropagation

‣ Artificial Neural Networks (NNs) biological neural networks
until we actually obtain a complete understanding about how the
human brain operates!

‣ NNs are powerful learning functions / universal
approximators, e.g. standard multi-layer feedforward
networks with as few as one hidden layer are capable of
approximating any (Borel measurable) function — and we are
aware of this for almost 40 years (Hornik, Stinchcombe and
White, 1989, doi.org/10.1016/0893-6080(89)90020-8)

‣ NB: Good understanding of logistic regression? Easy to
understand today’s lecture and fundamentals about NNs in a
few seconds. Otherwise it might take a few minutes.

≠

https://doi.org/10.1016/0893-6080(89)90020-8

Background task — Sen$ment classifica$on

5COMP0087 - Introduction to neural networks and backpropagation

Sentiment?

Wow, I love the sound of this acoustic guitar!

It was just another uneventful Marvel movie!

Can’t say I loved this performance, but I didn’t dislike it either.

 (positive)⟶ +

 (negative)⟶ −

 neutral⟶

Neural network — A simplified encoder—decoder architecture

6COMP0087 - Introduction to neural networks and backpropagation

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

pooling

Neural network — A simplified encoder—decoder architecture

7

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling
n

encoder

COMP0087 - Introduction to neural networks and backpropagation

Neural network — A simplified encoder—decoder architecture

8COMP0087 - Introduction to neural networks and backpropagation

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

W∈ℝm×n

n m

encoder

Neural network — A simplified encoder—decoder architecture

8COMP0087 - Introduction to neural networks and backpropagation

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

W∈ℝm×n

n m

encoder

decoder

Neural network — A simplified encoder—decoder architecture

8COMP0087 - Introduction to neural networks and backpropagation

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

W∈ℝm×n

n m

̂y

encoder

decoder

Neural network — A simplified encoder—decoder architecture

9COMP0087 - Introduction to neural networks and backpropagation

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

W∈ℝm×n

n m

̂y

encoder

activation
function

output

hidden
layer

decoder

Neural network — A simplified encoder—decoder architecture

10COMP0087 - Introduction to neural networks and backpropagation

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

W∈ℝm×(n+1)

n m

 for the bias terms+1

̂y

encoder

activation
function

output

hidden
layer

decoder

Neural network — A simplified encoder—decoder architecture

11COMP0087 - Introduction to neural networks and backpropagation

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

n m

̂y

encoder

W∈ℝm×(n+1)
 for the bias terms+1

activation
function

output

hidden
layer

One neural computa$on unit (of a hidden layer)

12COMP0087 - Introduction to neural networks and backpropagation

x = [x1 … xn]

x ∈ ℝn
x2

⋮

xn

x1

Input

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

13COMP0087 - Introduction to neural networks and backpropagation

x = [x1 … xn] w =
w1
⋮
wn

 w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

Input NN unit

weights

bias

x ∈ ℝn

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

14COMP0087 - Introduction to neural networks and backpropagation

x = [x1 … xn] w =
w1
⋮
wn

z ∈ ℝ

z = b +
n

∑
i=1

xiwi

 w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

z

Input NN unit Output

weights

bias

x ∈ ℝn

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

15COMP0087 - Introduction to neural networks and backpropagation

x = [x1 … xn] w =
w1
⋮
wn

z ∈ ℝ w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

z

Input NN unit Output

weights

bias z = b +
n

∑
i=1

xiwi

x ∈ ℝn

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

15COMP0087 - Introduction to neural networks and backpropagation

x = [x1 … xn] w =
w1
⋮
wn

z ∈ ℝ w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

z

Input NN unit Output

weights

bias

z = [1 x1 … xn] ⋅

b
w1
⋮
wn

x ⋅ w

simplifying notation

z = b +
n

∑
i=1

xiwi

x ∈ ℝn

love

the

guitar

…

Acvaon func$ons

16COMP0087 - Introduction to neural networks and backpropagation

z = x ⋅ w

x2

⋮

xn

x1

zw

Acvaon func$ons

16COMP0087 - Introduction to neural networks and backpropagation

z = x ⋅ w

x2

⋮

xn

x1

zw g(z)

a

activation
function

Acvaon func$ons

16COMP0087 - Introduction to neural networks and backpropagation

z = x ⋅ w

x2

⋮

xn

x1

zw g(z)

σ(z) =
1

1 + exp(−z)
= a

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

= a

ReLU(z) = max (z,0) = a rectified
linear unit

sigmoid
logistic

hyperbolic
tangent

a

activation
function

Acvaon func$ons

17COMP0087 - Introduction to neural networks and backpropagation

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

Acvaon func$ons

17COMP0087 - Introduction to neural networks and backpropagation

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

tanh ∈ (−1,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
tanh(z)

Acvaon func$ons

17COMP0087 - Introduction to neural networks and backpropagation

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

tanh ∈ (−1,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
tanh(z)

ReLU(z) = max (z,0)

ReLU ∈ (0, +∞)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
ReLU(z)

Acvaon func$ons — Vanishing gradient

18COMP0087 - Introduction to neural networks and backpropagation

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))
tanh(z)
ReLU(z)

σ(z) =
1

1 + exp(−z)

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

ReLU(z) = max (z,0)

σ ∈ (0,1)

tanh ∈ (−1,1)

ReLU ∈ (0, +∞)

‣ are differentiable,
 not differentiable at

‣ is almost always preferred
to , more expansive mapping

‣ if , become
saturated, i.e. with
derivatives gradient
updates (no more learning),
vanishing gradient issue

‣ ~ linear / does not have
this vanishing gradient issue

σ, tanh
ReLU 0
tanh

σ
z >> 0 σ and tanh

≈ 1
≈ 0 →

≈ 0

ReLU

One neural unit — Example

19COMP0087 - Introduction to neural networks and backpropagation

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂

One neural unit — Example

19COMP0087 - Introduction to neural networks and backpropagation

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

One neural unit — Example

19COMP0087 - Introduction to neural networks and backpropagation

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

x = [1 0.5 0.6 0.1]
w = [0.5 0.2 0.3 0.9]bias

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

One neural unit — Example

19COMP0087 - Introduction to neural networks and backpropagation

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

x = [1 0.5 0.6 0.1]
w = [0.5 0.2 0.3 0.9]

z = x ⋅ w = 1 ⋅ 0.5 + 0.5 ⋅ 0.2 + … + 0.1 ⋅ 0.9 = 0.87

bias

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

One neural unit — Example

19COMP0087 - Introduction to neural networks and backpropagation

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

x = [1 0.5 0.6 0.1]
w = [0.5 0.2 0.3 0.9]

z = x ⋅ w = 1 ⋅ 0.5 + 0.5 ⋅ 0.2 + … + 0.1 ⋅ 0.9 = 0.87

̂y = a = σ(z) =
1

1 + exp(−z)
=

1
1 + exp(−0.87)

= 0.705

bias

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

Feedforward neural network (1 layer)

20COMP0087 - Introduction to neural networks and backpropagation

decoder

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+
… … … …pooling …

z σ

W∈ℝm×(n+1)

n m

̂y

encoder

activation

output

hidden
layer

— A feedforward NN has: input units, hidden units, and output units
— Fully connected (standard version)
— This NN has 1 layer (input layer does not count)

Feedforward neural network (1 layer)

20COMP0087 - Introduction to neural networks and backpropagation

decoder

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+
… … … …pooling …

z σ

W∈ℝm×(n+1)

n m

̂y

encoder

activation

output

hidden
layer

— A feedforward NN has: input units, hidden units, and output units
— Fully connected (standard version)
— This NN has 1 layer (input layer does not count)

if is the sigmoid and
 what is this NN

~equivalent to?

σ
m = 1

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

Dimensionalities?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

x, a[0] ∈ℝn+1
Dimensionalities?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)
Dimensionalities?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

Dimensionalities?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

Dimensionalities?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)

no bias term used in
the output layer

x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

a[2], z[2], ŷ ∈ℝ3

Dimensionalities?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)

no bias term used in
the output layer

ŷ = σ2(W[2] σ1(W[1]x))

x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

a[2], z[2], ŷ ∈ℝ3

How many parameters
do we need to learn?

Feedforward neural network (2 layers, mul$ple outputs)

22COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)

no bias term used in
the output layer

x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

a[2], z[2], ŷ ∈ℝ3

Are nonlinear () acvaon func$ons necessary?σ

23COMP0087 - Introduction to neural networks and backpropagation

If our activation functions were linear in …ŷ = σ2(W[2] σ1(W[1]x))

Are nonlinear () acvaon func$ons necessary?σ

23COMP0087 - Introduction to neural networks and backpropagation

If our activation functions were linear in …ŷ = σ2(W[2] σ1(W[1]x))

ŷ = z[2]

= W[2]z[1]

= W[2]W[1]x
= W′￼x

Hence, we have reduced 2 layers back to 1 with altered parameters ().
This generalises to any number of layers.

W′￼

then we can simply omit the non-linear activations and :σ1 σ2

Inference with a feedforward neural network — Sohmax

24COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

Need to convert outputs to pseudo-probabilities
➡ common setting for is the softmax functionσ2

yi = softmax (zi) =
exp (zi)

∑d
j=1 exp (zj)

, 1 ≤ i ≤ d

Sohmax example

25COMP0087 - Introduction to neural networks and backpropagation

yi = softmax (zi) =
exp (zi)

∑d
j=1 exp (zj)

, 1 ≤ i ≤ d

∑
i

yi = 1 and yi ∈ [0,1] pseudo-probabilities

z[2] = [2 −1.99 −0.01]

ŷ = softmax (z[2]) = [0.868 0.016 0.116]

So, in our example if

then

Training a feedforward neural network

26COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

L (ŷ, y)

Training a feedforward neural network

26COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

L (ŷ, y)

How would I use a loss function
to update efficiently my NN parameters

in and ?

L (ŷ, y)
W[1] W[2]

Training a feedforward neural network

26COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

L (ŷ, y)

How would I use a loss function
to update efficiently my NN parameters

in and ?

L (ŷ, y)
W[1] W[2]

Backpropagation
a.k.a.

“backprop”

Cross-entropy loss func$on

27COMP0087 - Introduction to neural networks and backpropagation

where is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Cross-entropy loss func$on

27COMP0087 - Introduction to neural networks and backpropagation

where is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Only one of the ’s will be equal to . The rest will be .
If, say, , i.e. is the correct class,

the loss can be simplified as:

K yk 1 0
yc = 1, c = {1,…, K} c

Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc

Cross-entropy loss func$on

27COMP0087 - Introduction to neural networks and backpropagation

where is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Only one of the ’s will be equal to . The rest will be .
If, say, , i.e. is the correct class,

the loss can be simplified as:

K yk 1 0
yc = 1, c = {1,…, K} c

Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc

= − log
exp (zc)

∑K
j=1 exp (zj)

softmax

Backpropaga$on uses the chain rule

28COMP0087 - Introduction to neural networks and backpropagation

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

Chain rule:

Backpropaga$on uses the chain rule

28COMP0087 - Introduction to neural networks and backpropagation

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

Chain rule:

Backpropaga$on uses the chain rule

28COMP0087 - Introduction to neural networks and backpropagation

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

Backpropaga$on uses the chain rule

28COMP0087 - Introduction to neural networks and backpropagation

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

Backpropaga$on uses the chain rule

28COMP0087 - Introduction to neural networks and backpropagation

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

Backpropaga$on uses the chain rule

28COMP0087 - Introduction to neural networks and backpropagation

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

df
dx

=
1
ax

⋅ a =
1
x

Backpropaga$on uses the chain rule

28COMP0087 - Introduction to neural networks and backpropagation

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

df
dx

=
1
ax

⋅ a =
1
x

ln(ax) = ln(a) + ln(x)

Mul$dimensional chain rule

29COMP0087 - Introduction to neural networks and backpropagation

x∈ℝℓ

a = h(x), ℝℓ → ℝn

b = g(a), ℝn → ℝm

ℝℓ×m ℝn×mℝℓ×n

∂b
∂x

=
∂a
∂x

⋅
∂b
∂a

Mul$dimensional chain rule

29COMP0087 - Introduction to neural networks and backpropagation

x∈ℝℓ

a = h(x), ℝℓ → ℝn

b = g(a), ℝn → ℝm

ℝℓ×m ℝn×mℝℓ×n

∂b
∂x

=
∂a
∂x

⋅
∂b
∂a

∂b1

∂a1

∂b2

∂a1

∂b3

∂a1
⋯

∂bm

∂a1

∂b1

∂a2

∂b2

∂a2

∂b3

∂a2
⋯

∂bm

∂a2

∂b1

∂a3

∂b2

∂a3

∂b3

∂a3
⋯

∂bm

∂a3

⋮ ⋮ ⋮ ⋱ ⋮
∂b1

∂an

∂b2

∂an

∂b3

∂an
⋯

∂bm

∂an

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce
∂ℓ
∂wi

= ???

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂z

=
∂a
∂z

⋅
∂ℓ
∂a

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂z

=
∂a
∂z

⋅
∂ℓ
∂a

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

∂ℓ
∂wi

=
∂z
∂wi

⋅
∂ℓ
∂z

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduction to neural networks and backpropagation

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂z

=
∂a
∂z

⋅
∂ℓ
∂a

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

∂ℓ
∂wi

=
∂z
∂wi

⋅
∂ℓ
∂z

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

Lce

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]

Backprop (toy) example (1)

32COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units

‣ Just 2 inputs and 1 output (binary classification)

‣ No bias terms and different letters used for different variables to
simplify notation in upcoming slides

‣ Sigmoid (logistic) activation function everywhere

u = [u1 u2]

σ

v = ua c = σ(v)

Backprop (toy) example (1)

32COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units

‣ Just 2 inputs and 1 output (binary classification)

‣ No bias terms and different letters used for different variables to
simplify notation in upcoming slides

‣ Sigmoid (logistic) activation function everywhere

u = [u1 u2]

σ

v = ua

We want to update and with respect to the loss W u L(c, y)

c = σ(v)

Backprop (toy) example (2)

33COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

L(c, y) = − [y ln (c) + (1 − y) ln (1 − c)]

z = [z1
z2] = W ⋅ x = [w11 w12

w21 w22] ⋅ [x1
x2]

zi =
2

∑
j=1

wij ⋅ xj

c = σ(v)

Cross-entropy loss
for binary classification

Understanding how a matrix
operation looks like is key in
getting the derivatives right

Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2

The derivative of the
sigmoid activation is neat

Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

The derivative of the
sigmoid activation is neat

Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

The derivative of the
sigmoid activation is neat add and subtract 1

Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ (1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x))

The derivative of the
sigmoid activation is neat add and subtract 1

Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

= σ(x) ⋅ (1 − σ(x))

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ (1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x))

The derivative of the
sigmoid activation is neat add and subtract 1

σ(x)

Backprop (toy) example (4)

35COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

c = σ(v)

We first want to obtain this

Backprop (toy) example (4)

35COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

c = σ(v)

We first want to obtain this

Chain rule

Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

=

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1) =

c − y
c (1 − c)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v))

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v))

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v)) = c ⋅ (1 − c)

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (7)

38COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui

Backprop (toy) example (7)

38COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui
=

∂ (∑2
i=1 ui ⋅ ai)
∂ui

Backprop (toy) example (7)

38COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui
=

∂ (∑2
i=1 ui ⋅ ai)
∂ui

= ai

Backprop (toy) example (8)

39COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)

Backprop (toy) example (8)

39COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)

= (c − y) ⋅ ai

Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui

Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

zi =
2

∑
j=1

wij ⋅ xjGiven that

Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

∂zi

∂wij
= xj

zi =
2

∑
j=1

wij ⋅ xjGiven that

Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

∂zi

∂wij
= xj

zi =
2

∑
j=1

wij ⋅ xjGiven that

= (c − y) ⋅ ui ⋅ ai ⋅ (1 − ai) ⋅ xj

Upda$ng the parameters of the NN

41COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

unew
i = uold

i − η
∂L
∂ui

wnew
ij = wold

ij − η
∂L
∂wij

using a learning rate η

1.1
0.90

0.7

,

-0.6 -0.4

0.04

0.5-0.2

-

0 0.3

0.08

0.2

J(
,

,-
)

0.4 0.1

0.12

0.6

0.16

J(,,-) OLS
J(,,-) grad. descent

Op$misa$on (training)

42COMP0087 - Introduction to neural networks and backpropagation

‣ Stochastic gradient descent (SGD) works most of the time with some effort

➡ if we know our data / task well and can handle the learning rate ()

‣ Adaptive (more sophisticated) optimisers perform generally better; keep track
how much gradients change and dynamically decide how much to update the weights
➡ RMSProp
➡ Adaptive Moment Estimation Method (Adam)
➡ Adagrad
➡ AdaDelta
➡ SparseAdam
➡ many other variants

η

Learning rate ()η

43COMP0087 - Introduction to neural networks and backpropagation

‣ We want the learning rate to be just right (not too large or small)

‣ Too large learning too fast: the model may diverge and not converge

‣ Too small learning too slow: the model will not diverge, but may take ages to
converge

‣ is a common starting point value for a learning rate
tune it by orders of magnitude e.g.

‣ In SGD, you might want to decrease the learning rate as the training epochs
increase

‣ In fancier optimisers (e.g. Adam) we set the initial learning rate, but then the
optimiser takes care of dynamically tuning it

⟹

⟹

≈ 0.001
[0.01, 0.001, 0.0001]

decoder

Hey

Jude

is

…

…

…

+

…

…

so=max

d

n

̂y

encoder

…

…

…

most

famous

song

lookup W∈ℝn×d

…

aardvark

a

jam

zyzzyva

? Beatles

u∈ℝd

L = 3

Next lecture

44COMP0087 - Introduction to neural networks and backpropagation

‣ Friday, January 26

‣ Word embeddings (word2vec mainly)

