
Stascal Natural Language Processing [COMP0087]

Introduc)on to neural networks
and backpropaga)on

Vasileios Lampos
Computer Science, UCL

🖥 lampos.net

https://lampos.net

About this lecture

‣ In this lecture:
— Introductory neural network concepts
— Inference and training (backpropaga)on) with feedforward neural networks

‣ Reading / Lecture partly based on: Chapter 7 of “Speech and Language Processing”
(SLP) by Jurafsky and Mar$n (2023) — web.stanford.edu/~jurafsky/slp3/

‣ For those of you who want to have the slides in front of them during the lecture,
there is a clipped / early version at lampos.net/teaching (non clipped / slightly refined
version will be added a=er the lecture)

2COMP0087 - Introduc)on to neural networks and backpropaga)on

https://web.stanford.edu/~jurafsky/slp3/
https://www.lampos.net/teaching

The NLP view (for this lecture)

3

Encoder DecoderLarry Carlton is
cap)va)ng! +— Loss

f(x)

x
̂y y

dense

COMP0087 - Introduc)on to neural networks and backpropaga)on

The NLP view (for this lecture)

3

Encoder DecoderLarry Carlton is
cap)va)ng! +— Loss

f(x)

x
̂y y

dense
today, we are

going to be all over this,
forth and back…

COMP0087 - Introduc)on to neural networks and backpropaga)on

Ar$ficial neural networks — A few introductory remarks

4COMP0087 - Introduc)on to neural networks and backpropaga)on

‣ Ar$ficial Neural Networks (NNs) biological neural networks
un)l we actually obtain a complete understanding about how the
human brain operates!

‣ NNs are powerful learning func9ons / universal
approximators, e.g. standard mul$-layer feedforward
networks with as few as one hidden layer are capable of
approxima$ng any (Borel measurable) func$on — and we are
aware of this for almost 40 years (Hornik, S$nchcombe and
White, 1989, doi.org/10.1016/0893-6080(89)90020-8)

‣ NB: Good understanding of logis9c regression? Easy to
understand today’s lecture and fundamentals about NNs in a
few seconds. Otherwise it might take a few minutes.

≠

https://doi.org/10.1016/0893-6080(89)90020-8

Background task — Sen$ment classifica$on

5COMP0087 - Introduc)on to neural networks and backpropaga)on

Sen9ment?

Wow, I love the sound of this acous)c guitar!

It was just another unevenNul Marvel movie!

Can’t say I loved this performance, but I didn’t dislike it either.

 (posi*ve)⟶ +

 (nega*ve)⟶ −

 neutral⟶

Neural network — A simplified encoder—decoder architecture

6COMP0087 - Introduc)on to neural networks and backpropaga)on

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

pooling

Neural network — A simplified encoder—decoder architecture

7

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling
n

encoder

COMP0087 - Introduc)on to neural networks and backpropaga)on

Neural network — A simplified encoder—decoder architecture

8COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

W∈ℝm×n

n m

encoder

Neural network — A simplified encoder—decoder architecture

8COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

W∈ℝm×n

n m

encoder

decoder

Neural network — A simplified encoder—decoder architecture

8COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

W∈ℝm×n

n m

̂y

encoder

decoder

Neural network — A simplified encoder—decoder architecture

9COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝn

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

W∈ℝm×n

n m

̂y

encoder

ac)va)on
func)on

output

hidden
layer

decoder

Neural network — A simplified encoder—decoder architecture

10COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

W∈ℝm×(n+1)

n m

 for the bias terms+1

̂y

encoder

ac)va)on
func)on

output

hidden
layer

decoder

Neural network — A simplified encoder—decoder architecture

11COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … …

…pooling …

z σ

n m

̂y

encoder

W∈ℝm×(n+1)
 for the bias terms+1

ac)va)on
func)on

output

hidden
layer

One neural computa$on unit (of a hidden layer)

12COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1 … xn]

x ∈ ℝn
x2

⋮

xn

x1

Input

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

13COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1 … xn] w =
w1
⋮
wn

 w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

Input NN unit

weights

bias

x ∈ ℝn

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

14COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1 … xn] w =
w1
⋮
wn

z ∈ ℝ

z = b +
n

∑
i=1

xiwi

 w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

z

Input NN unit Output

weights

bias

x ∈ ℝn

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

15COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1 … xn] w =
w1
⋮
wn

z ∈ ℝ w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

z

Input NN unit Output

weights

bias z = b +
n

∑
i=1

xiwi

x ∈ ℝn

love

the

guitar

…

One neural computa$on unit (of a hidden layer)

15COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1 … xn] w =
w1
⋮
wn

z ∈ ℝ w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

z

Input NN unit Output

weights

bias

z = [1 x1 … xn] ⋅

b
w1
⋮
wn

x ⋅ w

simplifying nota*on

z = b +
n

∑
i=1

xiwi

x ∈ ℝn

love

the

guitar

…

Acvaon func$ons

16COMP0087 - Introduc)on to neural networks and backpropaga)on

z = x ⋅ w

x2

⋮

xn

x1

zw

Acvaon func$ons

16COMP0087 - Introduc)on to neural networks and backpropaga)on

z = x ⋅ w

x2

⋮

xn

x1

zw g(z)

a

ac)va)on
func)on

Acvaon func$ons

16COMP0087 - Introduc)on to neural networks and backpropaga)on

z = x ⋅ w

x2

⋮

xn

x1

zw g(z)

σ(z) =
1

1 + exp(−z)
= a

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

= a

ReLU(z) = max (z,0) = a rec*fied
linear unit

sigmoid
logis*c

hyperbolic
tangent

a

ac)va)on
func)on

Acvaon func$ons

17COMP0087 - Introduc)on to neural networks and backpropaga)on

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

Acvaon func$ons

17COMP0087 - Introduc)on to neural networks and backpropaga)on

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

tanh ∈ (−1,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
tanh(z)

Acvaon func$ons

17COMP0087 - Introduc)on to neural networks and backpropaga)on

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

tanh ∈ (−1,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
tanh(z)

ReLU(z) = max (z,0)

ReLU ∈ (0, +∞)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
ReLU(z)

Acvaon func$ons — Vanishing gradient

18COMP0087 - Introduc)on to neural networks and backpropaga)on

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))
tanh(z)
ReLU(z)

σ(z) =
1

1 + exp(−z)

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

ReLU(z) = max (z,0)

σ ∈ (0,1)

tanh ∈ (−1,1)

ReLU ∈ (0, +∞)

‣ are differen$able,
 not differen$able at

‣ is almost always preferred
to , more expansive mapping

‣ if , become
saturated, i.e. with
deriva$ves gradient
updates (no more learning),
vanishing gradient issue

‣ ~ linear / does not have
this vanishing gradient issue

σ, tanh
ReLU 0
tanh

σ
z >> 0 σ and tanh

≈ 1
≈ 0 →

≈ 0

ReLU

One neural unit — Example

19COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂

One neural unit — Example

19COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

One neural unit — Example

19COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

x = [1 0.5 0.6 0.1]
w = [0.5 0.2 0.3 0.9]bias

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

One neural unit — Example

19COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

x = [1 0.5 0.6 0.1]
w = [0.5 0.2 0.3 0.9]

z = x ⋅ w = 1 ⋅ 0.5 + 0.5 ⋅ 0.2 + … + 0.1 ⋅ 0.9 = 0.87

bias

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

One neural unit — Example

19COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

x = [1 0.5 0.6 0.1]
w = [0.5 0.2 0.3 0.9]

z = x ⋅ w = 1 ⋅ 0.5 + 0.5 ⋅ 0.2 + … + 0.1 ⋅ 0.9 = 0.87

̂y = a = σ(z) =
1

1 + exp(−z)
=

1
1 + exp(−0.87)

= 0.705

bias

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?

Feedforward neural network (1 layer)

20COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+
… … … …pooling …

z σ

W∈ℝm×(n+1)

n m

̂y

encoder

ac)va)on

output

hidden
layer

— A feedforward NN has: input units, hidden units, and output units
— Fully connected (standard version)
— This NN has 1 layer (input layer does not count)

Feedforward neural network (1 layer)

20COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x∈ℝn+1

lookuplove

the

guitar

lookup

lookup

…

…

…

+
… … … …pooling …

z σ

W∈ℝm×(n+1)

n m

̂y

encoder

ac)va)on

output

hidden
layer

— A feedforward NN has: input units, hidden units, and output units
— Fully connected (standard version)
— This NN has 1 layer (input layer does not count)

if is the sigmoid and
 what is this NN

~equivalent to?

σ
m = 1

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

Dimensionali$es?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

x, a[0] ∈ℝn+1
Dimensionali$es?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)
Dimensionali$es?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

Dimensionali$es?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

Dimensionali$es?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)

no bias term used in
the output layer

x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

a[2], z[2], ŷ ∈ℝ3

Dimensionali$es?

Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)

no bias term used in
the output layer

ŷ = σ2(W[2] σ1(W[1]x))

x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

a[2], z[2], ŷ ∈ℝ3

How many parameters
do we need to learn?

Feedforward neural network (2 layers, mul$ple outputs)

22COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

ac)va)on output
layer

hidden
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
ŷ = a[2]

bias term (+1)

no bias term used in
the output layer

x, a[0] ∈ℝn+1

W[1] ∈ℝm×(n+1)

a[1], z[1] ∈ℝm

W[2] ∈ℝ3×m

a[2], z[2], ŷ ∈ℝ3

Are nonlinear () acvaon func$ons necessary?σ

23COMP0087 - Introduc)on to neural networks and backpropaga)on

If our acvaon func$ons were linear in …ŷ = σ2(W[2] σ1(W[1]x))

Are nonlinear () acvaon func$ons necessary?σ

23COMP0087 - Introduc)on to neural networks and backpropaga)on

If our acvaon func$ons were linear in …ŷ = σ2(W[2] σ1(W[1]x))

ŷ = z[2]

= W[2]z[1]

= W[2]W[1]x
= W′ x

Hence, we have reduced 2 layers back to 1 with altered parameters ().
This generalises to any number of layers.

W′

then we can simply omit the non-linear acvaons and :σ1 σ2

Inference with a feedforward neural network — Sohmax

24COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

Need to convert outputs to pseudo-probabili$es
➡ common seing for is the sohmax func$onσ2

yi = softmax (zi) =
exp (zi)

∑d
j=1 exp (zj)

, 1 ≤ i ≤ d

Sohmax example

25COMP0087 - Introduc)on to neural networks and backpropaga)on

yi = softmax (zi) =
exp (zi)

∑d
j=1 exp (zj)

, 1 ≤ i ≤ d

∑
i

yi = 1 and yi ∈ [0,1] pseudo-probabili)es

z[2] = [2 −1.99 −0.01]

ŷ = softmax (z[2]) = [0.868 0.016 0.116]

So, in our example if

then

Training a feedforward neural network

26COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

L (ŷ, y)

Training a feedforward neural network

26COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

L (ŷ, y)

How would I use a loss func$on
to update efficiently my NN parameters

in and ?

L (ŷ, y)
W[1] W[2]

Training a feedforward neural network

26COMP0087 - Introduc)on to neural networks and backpropaga)on

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3

ŷ = a[2]

L (ŷ, y)

How would I use a loss func$on
to update efficiently my NN parameters

in and ?

L (ŷ, y)
W[1] W[2]

Backpropaga$on
a.k.a.

“backprop”

Cross-entropy loss func$on

27COMP0087 - Introduc)on to neural networks and backpropaga)on

where is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Cross-entropy loss func$on

27COMP0087 - Introduc)on to neural networks and backpropaga)on

where is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Only one of the ’s will be equal to . The rest will be .
If, say, , i.e. is the correct class,

the loss can be simplified as:

K yk 1 0
yc = 1, c = {1,…, K} c

Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc

Cross-entropy loss func$on

27COMP0087 - Introduc)on to neural networks and backpropaga)on

where is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Only one of the ’s will be equal to . The rest will be .
If, say, , i.e. is the correct class,

the loss can be simplified as:

K yk 1 0
yc = 1, c = {1,…, K} c

Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc

= − log
exp (zc)

∑K
j=1 exp (zj)

sohmax

Backpropaga$on uses the chain rule

28COMP0087 - Introduc)on to neural networks and backpropaga)on

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

Chain rule:

Backpropaga$on uses the chain rule

28COMP0087 - Introduc)on to neural networks and backpropaga)on

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

Chain rule:

Backpropaga$on uses the chain rule

28COMP0087 - Introduc)on to neural networks and backpropaga)on

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

Backpropaga$on uses the chain rule

28COMP0087 - Introduc)on to neural networks and backpropaga)on

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

Backpropaga$on uses the chain rule

28COMP0087 - Introduc)on to neural networks and backpropaga)on

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

Backpropaga$on uses the chain rule

28COMP0087 - Introduc)on to neural networks and backpropaga)on

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

df
dx

=
1
ax

⋅ a =
1
x

Backpropaga$on uses the chain rule

28COMP0087 - Introduc)on to neural networks and backpropaga)on

f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

df
dx

=
1
ax

⋅ a =
1
x

ln(ax) = ln(a) + ln(x)

Mul$dimensional chain rule

29COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝℓ

a = h(x), ℝℓ → ℝn

b = g(a), ℝn → ℝm

ℝℓ×m ℝn×mℝℓ×n

∂b
∂x

=
∂a
∂x

⋅
∂b
∂a

Mul$dimensional chain rule

29COMP0087 - Introduc)on to neural networks and backpropaga)on

x∈ℝℓ

a = h(x), ℝℓ → ℝn

b = g(a), ℝn → ℝm

ℝℓ×m ℝn×mℝℓ×n

∂b
∂x

=
∂a
∂x

⋅
∂b
∂a

∂b1

∂a1

∂b2

∂a1

∂b3

∂a1
⋯

∂bm

∂a1

∂b1

∂a2

∂b2

∂a2

∂b3

∂a2
⋯

∂bm

∂a2

∂b1

∂a3

∂b2

∂a3

∂b3

∂a3
⋯

∂bm

∂a3

⋮ ⋮ ⋮ ⋱ ⋮
∂b1

∂an

∂b2

∂an

∂b3

∂an
⋯

∂bm

∂an

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce
∂ℓ
∂wi

= ???

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂z

=
∂a
∂z

⋅
∂ℓ
∂a

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂z

=
∂a
∂z

⋅
∂ℓ
∂a

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

∂ℓ
∂wi

=
∂z
∂wi

⋅
∂ℓ
∂z

Backprop and the chain rule in a 1-dimensional NN

30COMP0087 - Introduc)on to neural networks and backpropaga)on

…

n

x

ℝn

z = w ⋅ x

ℝ

a = σ(z)

ℝ

ℓ = − log(a)

ℝ

σ1 Lce

∂ℓ
∂ℓ

= 1

∂ℓ
∂wi

= ???

∂ℓ
∂z

=
∂a
∂z

⋅
∂ℓ
∂a

∂ℓ
∂a

=
∂ℓ
∂a

⋅
∂ℓ
∂ℓ

∂ℓ
∂wi

=
∂z
∂wi

⋅
∂ℓ
∂z

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

Lce

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]

Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]

Backprop (toy) example (1)

32COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units

‣ Just 2 inputs and 1 output (binary classifica)on)

‣ No bias terms and different lekers used for different variables to
simplify nota$on in upcoming slides

‣ Sigmoid (logis)c) acvaon func$on everywhere

u = [u1 u2]

σ

v = ua c = σ(v)

Backprop (toy) example (1)

32COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units

‣ Just 2 inputs and 1 output (binary classifica)on)

‣ No bias terms and different lekers used for different variables to
simplify nota$on in upcoming slides

‣ Sigmoid (logis)c) acvaon func$on everywhere

u = [u1 u2]

σ

v = ua

We want to update and with respect to the loss W u L(c, y)

c = σ(v)

Backprop (toy) example (2)

33COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

L(c, y) = − [y ln (c) + (1 − y) ln (1 − c)]

z = [z1
z2] = W ⋅ x = [w11 w12

w21 w22] ⋅ [x1
x2]

zi =
2

∑
j=1

wij ⋅ xj

c = σ(v)

Cross-entropy loss
for binary classifica$on

Understanding how a matrix
opera$on looks like is key in
geing the deriva$ves right

Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2

The deriva$ve of the
sigmoid acvaon is neat

Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

The deriva$ve of the
sigmoid acvaon is neat

Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

The deriva$ve of the
sigmoid acvaon is neat add and subtract 1

Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ (1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x))

The deriva$ve of the
sigmoid acvaon is neat add and subtract 1

Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

= σ(x) ⋅ (1 − σ(x))

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ (1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x))

The deriva$ve of the
sigmoid acvaon is neat add and subtract 1

σ(x)

Backprop (toy) example (4)

35COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

c = σ(v)

We first want to obtain this

Backprop (toy) example (4)

35COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

c = σ(v)

We first want to obtain this

Chain rule

Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

=

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1) =

c − y
c (1 − c)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)

Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v))

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v))

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v)) = c ⋅ (1 − c)

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder

Backprop (toy) example (7)

38COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui

Backprop (toy) example (7)

38COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui
=

∂ (∑2
i=1 ui ⋅ ai)
∂ui

Backprop (toy) example (7)

38COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui
=

∂ (∑2
i=1 ui ⋅ ai)
∂ui

= ai

Backprop (toy) example (8)

39COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)

Backprop (toy) example (8)

39COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)

= (c − y) ⋅ ai

Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui

Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

zi =
2

∑
j=1

wij ⋅ xjGiven that

Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

∂zi

∂wij
= xj

zi =
2

∑
j=1

wij ⋅ xjGiven that

Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

∂zi

∂wij
= xj

zi =
2

∑
j=1

wij ⋅ xjGiven that

= (c − y) ⋅ ui ⋅ ai ⋅ (1 − ai) ⋅ xj

Upda$ng the parameters of the NN

41COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

unew
i = uold

i − η
∂L
∂ui

wnew
ij = wold

ij − η
∂L
∂wij

using a learning rate η

1.1
0.90

0.7

,

-0.6 -0.4

0.04

0.5-0.2

-

0 0.3

0.08

0.2

J(
,

,-
)

0.4 0.1

0.12

0.6

0.16

J(,,-) OLS
J(,,-) grad. descent

Op$misa$on (training)

42COMP0087 - Introduc)on to neural networks and backpropaga)on

‣ Stochas$c gradient descent (SGD) works most of the $me with some effort

➡ if we know our data / task well and can handle the learning rate ()

‣ Adap$ve (more sophis$cated) op$misers perform generally beker; keep track
how much gradients change and dynamically decide how much to update the weights
➡ RMSProp
➡ Adap$ve Moment Es$ma$on Method (Adam)
➡ Adagrad
➡ AdaDelta
➡ SparseAdam
➡ many other variants

η

Learning rate ()η

43COMP0087 - Introduc)on to neural networks and backpropaga)on

‣ We want the learning rate to be just right (not too large or small)

‣ Too large learning too fast: the model may diverge and not converge

‣ Too small learning too slow: the model will not diverge, but may take ages to
converge

‣ is a common star$ng point value for a learning rate
tune it by orders of magnitude e.g.

‣ In SGD, you might want to decrease the learning rate as the training epochs
increase

‣ In fancier op$misers (e.g. Adam) we set the ini$al learning rate, but then the
op$miser takes care of dynamically tuning it

⟹

⟹

≈ 0.001
[0.01, 0.001, 0.0001]

decoder

Hey

Jude

is

…

…

…

+

…

…

so=max

d

n

̂y

encoder

…

…

…

most

famous

song

lookup W∈ℝn×d

…

aardvark

a

jam

zyzzyva

? Beatles

u∈ℝd

L = 3

Next lecture

44COMP0087 - Introduc)on to neural networks and backpropaga)on

‣ Friday, January 26

‣ Word embeddings (word2vec mainly)

