Statistical Natural Language Processing [COMP0087]

Introduction to neural networks and backpropagation

Vasileios Lampos

Computer Science, UCL

About this lecture

- In this lecture:
- Introductory neural network concepts
- Inference and training (backpropagation) with feedforward neural networks
- Reading / Lecture partly based on: Chapter 7 of "Speech and Language Processing" (SLP) by Jurafsky and Martin (2023) - web.stanford.edu/~jurafsky/slp3/
- For those of you who want to have the slides in front of them during the lecture, there is a clipped / early version at lampos.net/teaching (non clipped / slightly refined version will be added after the lecture)

The NLP view (for this lecture)

Artificial neural networks - A few introductory remarks

- Artificial Neural Networks (NNs) \neq biological neural networks until we actually obtain a complete understanding about how the human brain operates!
- NNs are powerful learning functions / universal
 approximators, e.g. standard multi-layer feedforward networks with as few as one hidden layer are capable of approximating any (Borel measurable) function - and we are aware of this for almost 40 years (Hornik, Stinchcombe and White, 1989, doi.org/10.1016/0893-6080(89)90020-8)
- NB: Good understanding of logistic regression? Easy to understand today's lecture and fundamentals about NNs in a few seconds. Otherwise it might take a few minutes.

Sentiment?

Wow, I love the sound of this acoustic guitar!

It was just another uneventful Marvel movie!
$\longrightarrow+$ (positive) $\longrightarrow-$ (negative)

Can't say I loved this performance, but I didn't dislike it either. \longrightarrow neutral

One neural computation unit (of a hidden layer)

Input
love

One neural computation unit (of a hidden layer)

Input \quad NN unit

One neural computation unit (of a hidden layer)

Input \quad NN unit Output

One neural computation unit (of a hidden layer)

Input \quad NN unit Output

One neural computation unit (of a hidden layer)

Input
 NN unit
 Output

Activation functions

Activation functions

Activation functions

$$
\begin{array}{cc}
\sigma(z)=\frac{1}{1+\exp (-z)}=a & \begin{array}{c}
\text { sigmoid } \\
\text { logistic }
\end{array} \\
\tanh (z)=\frac{\exp (z)-\exp (-z)}{\exp (z)+\exp (-z)}=a & \begin{array}{c}
\text { hyperbolic } \\
\text { tangent }
\end{array} \\
\operatorname{ReLU}(z)=\max (z, 0)=a & \begin{array}{c}
\text { rectified } \\
\text { linear unit }
\end{array}
\end{array}
$$

Activation functions

Activation functions

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

$$
\sigma \in(0,1)
$$

$$
\tanh (z)=\frac{\exp (z)-\exp (-z)}{\exp (z)+\exp (-z)}
$$

$\tanh \in(-1,1)$

Activation functions

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

$$
\sigma \in(0,1)
$$

$$
\tanh (z)=\frac{\exp (z)-\exp (-z)}{\exp (z)+\exp (-z)}
$$

$$
\tanh \in(-1,1)
$$

$\operatorname{ReLU}(z)=\max (z, 0)$
$\operatorname{ReLU} \in(0,+\infty)$

Activation functions - Vanishing gradient

- σ, tanh are differentiable, ReLU not differentiable at 0
- tanh is almost always preferred to σ, more expansive mapping
- if $z \gg 0, \sigma$ and \tanh become saturated, i.e. ≈ 1 with derivatives $\approx 0 \rightarrow$ gradient updates ≈ 0 (no more learning), vanishing gradient issue
- ReLU ~ linear / does not have this vanishing gradient issue

One neural unit - Example

$$
\begin{aligned}
\mathbf{x} & =\left[\begin{array}{lll}
0.5 & 0.6 & 0.1
\end{array}\right] \\
\mathbf{w} & =\left[\begin{array}{lll}
0.2 & 0.3 & 0.9
\end{array}\right] \\
b & =0.5
\end{aligned}
$$

One neural unit - Example

$$
\begin{aligned}
\mathbf{x} & =\left[\begin{array}{lll}
0.5 & 0.6 & 0.1
\end{array}\right] \\
\mathbf{w} & =\left[\begin{array}{lll}
0.2 & 0.3 & 0.9
\end{array}\right] \\
b & =0.5
\end{aligned}
$$

$$
z=?
$$

One neural unit - Example

One neural unit - Example

One neural unit - Example

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{lll}
0.5 & 0.6 & 0.1
\end{array}\right] \\
& \mathbf{w}=\left[\begin{array}{lll}
0.2 & 0.3 & 0.9
\end{array}\right] \\
& b=0.5 \\
& \text { bias } \quad \mathbf{w}=\left[\begin{array}{llll}
0.5 & 0.2 & 0.3 & 0.9
\end{array}\right] \\
& \begin{array}{l}
\mathbf{x}=\left[\begin{array}{llll}
1 & 0.5 & 0.6 & 0.1
\end{array}\right] \\
\mathbf{w}
\end{array}=\left[\begin{array}{llll}
0.5 & 0.2 & 0.3 & 0.9
\end{array}\right] \\
& z=\text { ? } \\
& z=\mathbf{x} \cdot \mathbf{w}=1 \cdot 0.5+0.5 \cdot 0.2+\ldots+0.1 \cdot 0.9=0.87 \\
& \hat{y}=a=\sigma(z)=\frac{1}{1+\exp (-z)}=\frac{1}{1+\exp (-0.87)}=0.705
\end{aligned}
$$

- A feedforward NN has: input units, hidden units, and output units
- Fully connected (standard version)
- This NN has 1 layer (input layer does not count)

Feedforward neural network (1 layer)

- A feedforward NN has: input units, hidden units, and output units
- Fully connected (standard version)
- This NN has 1 layer (input layer does not count)

Feedforward neural network (2 layers, multiple outputs)

Feedforward neural network (2 layers, multiple outputs)

$$
\begin{aligned}
\mathbf{z}^{[1]} & =\mathbf{W}^{[1]} \mathbf{a}^{[0]} \\
\mathbf{a}^{[1]} & =\sigma_{1}\left(\mathbf{z}^{[1]}\right) \\
\mathbf{z}^{[2]} & =\mathbf{W}^{[2]} \mathbf{a}^{[1]} \\
\mathbf{a}^{[2]} & =\sigma_{2}\left(\mathbf{z}^{[2]}\right) \\
\hat{\mathbf{y}} & =\mathbf{a}^{[2]}
\end{aligned}
$$

Dimensionalities?

Feedforward neural network (2 layers, multiple outputs)

$$
\begin{aligned}
\mathbf{z}^{[1]} & =\mathbf{W}^{[1]} \mathbf{a}^{[0]} \\
\mathbf{a}^{[1]} & =\sigma_{1}\left(\mathbf{z}^{[1]}\right) \\
\mathbf{z}^{[2]} & =\mathbf{W}^{[2]} \mathbf{a}^{[1]} \\
\mathbf{a}^{[2]} & =\sigma_{2}\left(\mathbf{z}^{[2]}\right) \\
\hat{\mathbf{y}} & =\mathbf{a}^{[2]}
\end{aligned}
$$

$\mathbf{x}, \mathbf{a}^{[0]} \in \mathbb{R}^{n+1}$	bias term (+1)
$\mathbf{W}^{[1]} \in \mathbb{R}^{m \times(n+1)}$	
$\mathbf{a}^{[1]}, \mathbf{z}^{[1]} \in \mathbb{R}^{m}$	
$\mathbf{W}^{[2]} \in \mathbb{R}^{3 \times m}$	no bias term used
$\mathbf{a}^{[2]}, \mathbf{z}^{[2]}, \hat{\mathbf{y}} \in \mathbb{R}^{3}$	he output layer

How many parameters do we need to learn?

If our activation functions were linear in $\hat{\mathbf{y}}=\sigma_{2}\left(\mathbf{W}^{[2]} \sigma_{1}\left(\mathbf{W}^{[1]} \mathbf{x}\right)\right) \ldots$

If our activation functions were linear in $\hat{\mathbf{y}}=\sigma_{2}\left(\mathbf{W}^{[2]} \sigma_{1}\left(\mathbf{W}^{[1]} \mathbf{x}\right)\right) \ldots$ then we can simply omit the non-linear activations σ_{1} and σ_{2} :

$$
\begin{aligned}
\hat{\mathbf{y}} & =\mathbf{z}^{[2]} \\
& =\mathbf{W}^{[2]} \mathbf{z}^{[1]} \\
& =\mathbf{W}^{[2]} \mathbf{W}^{[1]} \mathbf{x} \\
& =\mathbf{W}^{\prime} \mathbf{x}
\end{aligned}
$$

Hence, we have reduced 2 layers back to 1 with altered parameters (\mathbf{W}). This generalises to any number of layers.

Inference with a feedforward neural network - Softmax

Need to convert outputs to pseudo-probabilities
\Rightarrow common setting for σ_{2} is the softmax function

$$
y_{i}=\operatorname{softmax}\left(z_{i}\right)=\frac{\exp \left(z_{i}\right)}{\sum_{j=1}^{d} \exp \left(z_{j}\right)}, 1 \leq i \leq d
$$

Softmax example

$$
\begin{aligned}
y_{i}=\operatorname{softmax}\left(z_{i}\right) & =\frac{\exp \left(z_{i}\right)}{\sum_{j=1}^{d} \exp \left(z_{j}\right)}, 1 \leq i \leq d \\
\sum_{i} y_{i} & =1 \text { and } y_{i} \in[0,1] \quad \text { pseudo-probabilities }
\end{aligned}
$$

So, in our example if

$$
\mathbf{z}^{[2]}=\left[\begin{array}{lll}
2 & -1.99 & -0.01
\end{array}\right]
$$

then

$$
\hat{\mathbf{y}}=\operatorname{softmax}\left(\mathbf{z}^{[2]}\right)=\left[\begin{array}{lll}
0.868 & 0.016 & 0.116
\end{array}\right]
$$

Training a feedforward neural network

Cross-entropy loss function

Cross-entropy loss

$$
L_{\mathrm{ce}}(\hat{\mathbf{y}}, \mathbf{y})=-\sum_{k=1}^{K} y_{k} \log \hat{y}_{k}
$$

where K is the number of output classes

Cross-entropy loss

$$
L_{\mathrm{ce}}(\hat{\mathbf{y}}, \mathbf{y})=-\sum_{k=1}^{K} y_{k} \log \hat{y}_{k}
$$

where K is the number of output classes

Only one of the $K y_{k}$'s will be equal to 1 . The rest will be 0 .
If, say, $y_{c}=1, c=\{1, \ldots, K\}$, i.e. c is the correct class, the loss can be simplified as:

$$
L_{\mathrm{ce}}(\hat{\mathbf{y}}, \mathbf{y})=-y_{c} \cdot \log \hat{y}_{c}=-\log \hat{y}_{c}
$$

Cross-entropy loss

$$
L_{\mathrm{ce}}(\hat{\mathbf{y}}, \mathbf{y})=-\sum_{k=1}^{K} y_{k} \log \hat{y}_{k}
$$

where K is the number of output classes

Only one of the $K y_{k}$'s will be equal to 1 . The rest will be 0 .
If, say, $y_{c}=1, c=\{1, \ldots, K\}$, i.e. c is the correct class, the loss can be simplified as:

$$
\begin{aligned}
L_{\mathrm{Ce}}(\hat{\mathbf{y}}, \mathbf{y}) & =-y_{c} \cdot \log \hat{y}_{c}=-\log \hat{y}_{c} \\
& =-\log \frac{\exp \left(z_{c}\right)}{\sum_{j=1}^{K} \exp \left(z_{j}\right)}+\cdots \cdots \cdots \cdot \text { softmax }
\end{aligned}
$$

Backpropagation uses the chain rule

$$
f(x)=g(h(x))
$$

Chain rule: $\quad \frac{d f}{d x}=\frac{d g}{d h} \cdot \frac{d h}{d x}$

$$
f(x)=g(h(x))
$$

Chain rule: $\quad \frac{d f}{d x}=\frac{d g}{d h} \cdot \frac{d h}{d x}$

$$
f(x)=\left(x^{2}+1\right)^{2}=g(h(x)) \quad ? ?
$$

$$
f(x)=g(h(x))
$$

Chain rule: $\quad \frac{d f}{d x}=\frac{d g}{d h} \cdot \frac{d h}{d x}$

$$
\begin{gathered}
f(x)=\left(x^{2}+1\right)^{2}=g(h(x)) ? ? \\
h(x)=x^{2}+1 \text { and } g(x)=x^{2}
\end{gathered}
$$

$$
f(x)=g(h(x))
$$

Chain rule: $\quad \frac{d f}{d x}=\frac{d g}{d h} \cdot \frac{d h}{d x}$

$$
\begin{gathered}
f(x)=\left(x^{2}+1\right)^{2}=g(h(x)) ? ? \\
h(x)=x^{2}+1 \text { and } g(x)=x^{2} \\
\frac{d f}{d x}=2\left(x^{2}+1\right) \cdot 2 x
\end{gathered}
$$

$$
f(x)=g(h(x))
$$

Chain rule: $\quad \frac{d f}{d x}=\frac{d g}{d h} \cdot \frac{d h}{d x}$

$$
\begin{gathered}
f(x)=\left(x^{2}+1\right)^{2}=g(h(x)) ? ? \\
h(x)=x^{2}+1 \text { and } g(x)=x^{2} \\
\frac{d f}{d x}=2\left(x^{2}+1\right) \cdot 2 x
\end{gathered}
$$

$$
f(x)=g(h(x))
$$

Chain rule: $\quad \frac{d f}{d x}=\frac{d g}{d h} \cdot \frac{d h}{d x}$

$$
\begin{gathered}
f(x)=\left(x^{2}+1\right)^{2}=g(h(x)) ? ? \\
h(x)=x^{2}+1 \text { and } g(x)=x^{2} \\
\frac{d f}{d x}=2\left(x^{2}+1\right) \cdot 2 x
\end{gathered}
$$

$$
\begin{gathered}
f(x)=\ln (a x)=g(h(x)) \\
h(x)=a x \quad \text { and } \quad g(x)=\ln (x) \\
\frac{d f}{d x}=\frac{1}{a x} \cdot a=\frac{1}{x}
\end{gathered}
$$

$$
f(x)=g(h(x))
$$

Chain rule: $\quad \frac{d f}{d x}=\frac{d g}{d h} \cdot \frac{d h}{d x}$

$$
\begin{gathered}
f(x)=\left(x^{2}+1\right)^{2}=g(h(x)) ? ? \\
h(x)=x^{2}+1 \text { and } g(x)=x^{2} \\
\frac{d f}{d x}=2\left(x^{2}+1\right) \cdot 2 x
\end{gathered}
$$

$$
\begin{gathered}
f(x)=\ln (a x)=g(h(x)) \\
h(x)=a x \quad \text { and } \quad g(x)=\ln (x) \\
\frac{d f}{d x}=\frac{1}{a x} \cdot a=\frac{1}{x} \\
\quad \ln (a x)=\ln (a)+\ln (x)
\end{gathered}
$$

Multidimensional chain rule

$$
\begin{aligned}
& \mathbf{x} \in \mathbb{R}^{\ell} \\
& \mathbf{a}=h(\mathbf{x}), \quad \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n} \\
& \mathbf{b}=g(\mathbf{a}), \quad \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{R}^{\ell \times m} \mathbb{R}^{\ell \times n} \\
& \frac{\partial \mathbf{b}}{\partial \mathbf{x}}=\frac{\mathbb{R}^{n \times m}}{\partial \mathbf{a}} \cdot \frac{\partial \mathbf{b}}{\partial \mathbf{a}}
\end{aligned}
$$

Multidimensional chain rule

$$
\begin{aligned}
& \mathbf{x} \in \mathbb{R}^{\ell} \\
& \mathbf{a}=h(\mathbf{x}), \quad \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{n} \\
& \mathbf{b}=g(\mathbf{a}), \quad \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
\end{aligned}
$$

Backprop and the chain rule in a 1-dimensional NN

Backprop and the chain rule in a 1-dimensional NN

Backprop and the chain rule in a 1-dimensional NN

Backprop and the chain rule in a 1-dimensional NN

Backprop and the chain rule in a 1-dimensional NN

Backprop and the chain rule in a 1-dimensional NN

Backprop and the chain rule in a 1-dimensional NN

$$
\mathbb{R}^{n}
$$

Backprop and the chain rule in a 1-dimensional NN

$$
\begin{aligned}
& \frac{\partial \ell}{\partial a}=\frac{\partial \ell}{\partial a} \cdot \frac{\partial \ell}{\partial \ell} \leftharpoonup \frac{\partial \ell}{\partial \ell}=1
\end{aligned}
$$

\mathbb{R}^{n}
\mathbb{R}
\mathbb{R}
\mathbb{R}

$$
\frac{\partial \ell}{\partial z}=\frac{\partial a}{\partial z} \cdot \frac{\partial \ell}{\partial a} \longleftarrow \frac{\partial \ell}{\partial a}=\frac{\partial \ell}{\partial a} \cdot \frac{\partial \ell}{\partial \ell} \longleftarrow \frac{\partial \ell}{\partial \ell}=1
$$

Backprop and the chain rule in a 1-dimensional NN

$$
\frac{\partial \ell}{\partial \mathbf{w}_{i}}=\frac{\partial z}{\partial w_{i}} \cdot \frac{\partial \ell}{\partial z}<\frac{\partial \ell}{\partial z}=\frac{\partial a}{\partial z} \cdot \frac{\partial \ell}{\partial a}<\frac{\partial \ell}{\partial a}=\frac{\partial \ell}{\partial a} \cdot \frac{\partial \ell}{\partial \ell}<\frac{\partial \ell}{\partial \ell}=1
$$

Backprop and the chain rule in a 1-dimensional NN

$$
\begin{aligned}
& \frac{\partial l}{\partial \mathbf{w}_{i}}=\frac{\partial z}{\partial w_{i}} \cdot \frac{\partial l}{\partial z} \cdot<\frac{\partial l}{\partial z}=\frac{\partial a}{\partial z} \cdot \frac{\partial l}{\partial a}: \frac{\partial l}{\partial a}=\frac{\partial l}{\partial a} \cdot \frac{\partial l}{\partial l}<\frac{\partial l}{\partial l}=1 \\
& \mathbb{R}^{n} \\
& \mathbf{x} \\
& \hdashline n=\mathbf{w} \cdot \mathbf{x} \\
& \mathbb{R}
\end{aligned}
$$

$$
\frac{\partial \ell}{\partial a^{[2]}}=\frac{\partial \ell}{\partial a^{[2]}} \cdot \frac{\partial \ell}{\partial \ell} \quad \longleftarrow \quad \frac{\partial \ell}{\partial \ell}=1
$$

$$
\frac{\partial \ell}{\partial z^{[2]}}=\frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial \ell}{\partial a^{[2]}} \quad \longleftarrow \quad \frac{\partial \ell}{\partial a^{[2]}}=\frac{\partial \ell}{\partial a^{[2]}} \cdot \frac{\partial \ell}{\partial \ell} \quad \longleftarrow \quad \frac{\partial \ell}{\partial \ell}=1
$$

Backprop and the chain rule in multiple dimensions

$$
\frac{\partial \ell}{\partial \mathbf{w}_{i}^{[2]}}=\frac{\partial z^{[2]}}{\partial \mathbf{w}_{i}^{[2]}} \cdot \frac{\partial \ell}{\partial z^{[2]}} \leftarrow \frac{\partial \ell}{\partial z^{[2]}}=\frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial \ell}{\partial a^{[2]}} \leftarrow \frac{\partial \ell}{\partial a^{[2]}}=\frac{\partial \ell}{\partial a^{[2]}} \cdot \frac{\partial \ell}{\partial \ell} \leftarrow \frac{\partial \ell}{\partial \ell}=1
$$

Backprop and the chain rule in multiple dimensions

$$
\frac{\partial \ell}{\partial \mathbf{W}_{i j}^{[1]}}=\frac{\partial \ell}{\partial a^{[2]}} \cdot \frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial \mathbf{a}_{i}^{[1]}} \cdot \frac{\partial \mathbf{a}_{i}^{[1]}}{\partial \mathbf{z}_{i}^{[1]}} \cdot \frac{\partial \mathbf{z}_{i}^{[1]}}{\partial \mathbf{W}_{i j}^{[1]}}
$$

$$
\frac{\partial \ell}{\partial \mathbf{w}_{i}^{[2]}}=\frac{\partial z^{[2]}}{\partial \mathbf{w}_{i}^{[2]}} \cdot \frac{\partial \ell}{\partial z^{[2]}} \longleftarrow \frac{\partial \ell}{\partial z^{[2]}}=\frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial \ell}{\partial a^{[2]}} \longleftarrow \frac{\partial \ell}{\partial a^{[2]}}=\frac{\partial \ell}{\partial a^{[2]}} \cdot \frac{\partial \ell}{\partial \ell} \longleftarrow \frac{\partial \ell}{\partial \ell}=1
$$

Backprop and the chain rule in multiple dimensions

$$
\frac{\partial \ell}{\partial \mathbf{W}_{i j}^{[1]}}=\frac{\partial \ell}{\partial a^{[2]}} \cdot \frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial \mathbf{a}_{i}^{[1]}} \cdot \frac{\partial \mathbf{a}_{i}^{[1]}}{\partial \mathbf{z}_{i}^{[1]}} \cdot \frac{\partial \mathbf{z}_{i}^{[1]}}{\partial \mathbf{W}_{i j}^{[i]}}
$$

$$
\frac{\partial \ell}{\partial \mathbf{w}_{i}^{[2]}}=\frac{\partial z^{[2]}}{\partial \mathbf{w}_{i}^{[2]}} \cdot \frac{\partial \ell}{\partial z^{[2]}} \longleftarrow \frac{\partial \ell}{\partial z^{[2]}}=\frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial \ell}{\partial a^{[2]}} \leftharpoonup \frac{\partial \ell}{\partial a^{[2]}}=\frac{\partial \ell}{\partial a^{[2]}} \cdot \frac{\partial \ell}{\partial \ell} \leftharpoonup \frac{\partial \ell}{\partial \ell}=1
$$

- Feedforward NN with 2 layers with 2 and 1 units
- Just 2 inputs and 1 output (binary classification)
- No bias terms and different letters used for different variables to simplify notation in upcoming slides
- Sigmoid (logistic) activation function everywhere

Backprop (toy) example (1)

- Feedforward NN with 2 layers with 2 and 1 units
- Just 2 inputs and 1 output (binary classification)
- No bias terms and different letters used for different variables to simplify notation in upcoming slides
- Sigmoid (logistic) activation function everywhere

We want to update \mathbf{W} and \mathbf{u} with respect to the loss $L(c, y)$

Cross-entropy loss for binary classification

Understanding how a matrix
operation looks like is key in
getting the derivatives right
Understanding how a matrix
operation looks like is key in
getting the derivatives right
Understanding how a matrix
operation looks like is key in
getting the derivatives right

$$
L(c, y)=-[y \ln (c)+(1-y) \ln (1-c)]
$$

$$
\begin{aligned}
& \mathbf{z}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\mathbf{W} \cdot \mathbf{x}=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& z_{i}=\sum_{j=1}^{2} w_{i j} \cdot x_{j}
\end{aligned}
$$

Backprop (toy) example (3)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{u a} \quad c=\sigma(v) \\
& \mathbf{W}=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \\
& \text { The derivative of the } \\
& \text { sigmoid activation is neat } \\
& \sigma(x)=\frac{1}{1-\exp (-x)} \\
& \frac{d \sigma}{d x}=\frac{-\exp (-x)}{(1-\exp (-x))^{2}}
\end{aligned}
$$

Backprop (toy) example (3)

The derivative of the sigmoid activation is neat

$$
\sigma(x)=\frac{1}{1-\exp (-x)}
$$

$$
\frac{d \sigma}{d x}=\frac{-\exp (-x)}{(1-\exp (-x))^{2}}=\frac{1}{1-\exp (-x)} \cdot \frac{-\exp (-x)}{1-\exp (-x)}
$$

Backprop (toy) example (3)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{u a} \quad c=\sigma(v) \\
& \mathbf{W}=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \\
& \text { The derivative of the } \\
& \text { sigmoid activation is neat } \quad \sigma(x)=\frac{1}{1-\exp (-x)} \\
& \text { add and subtract } 1 \\
& \frac{d \sigma}{d x}=\frac{-\exp (-x)}{(1-\exp (-x))^{2}}=\frac{1}{1-\exp (-x)} \cdot \frac{-\exp (-x)}{1-\exp (-x)}=\frac{1}{1-\exp (-x)} \cdot \frac{\mathbf{1}-\exp (-\mathbf{x})-\mathbf{1}}{1-\exp (-x)}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[{\mathbf{W}=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right.}]]{\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \mathbf{z = \mathbf { W } \mathbf { x } = [\begin{array} { l }
{ z _ { 1 } } \\
{ z _ { 2 } }
\end{array}]} \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{u} \quad c=\sigma(v) \\
& \text { The derivative of the } \\
& \text { sigmoid activation is neat } \\
& \sigma(x)=\frac{1}{1-\exp (-x)} \\
& \text { add and subtract } 1 \\
& \frac{d \sigma}{d x}=\frac{-\exp (-x)}{(1-\exp (-x))^{2}}=\frac{1}{1-\exp (-x)} \cdot \frac{-\exp (-x)}{1-\exp (-x)} \quad=\frac{1}{1-\exp (-x)} \cdot \frac{\mathbf{1}-\exp (-\mathbf{x})-\mathbf{1}}{1-\exp (-x)} \\
& =\frac{1}{1-\exp (-x)} \cdot\left(\frac{1-\exp (-x)}{1-\exp (-x)}-\frac{1}{1-\exp (-x)}\right)
\end{aligned}
$$

The derivative of the sigmoid activation is neat

$$
\sigma(x)=\frac{1}{1-\exp (-x)}
$$

$$
\text { add and subtract } 1
$$

$$
\frac{d \sigma}{d x}=\frac{-\exp (-x)}{(1-\exp (-x))^{2}}=\frac{1}{1-\exp (-x)} \cdot \frac{-\exp (-x)}{1-\exp (-x)}=\frac{1}{1-\exp (-x)} \cdot \frac{\mathbf{1}-\exp (-\mathbf{x})-\mathbf{1}}{1-\exp (-x)}
$$

$$
=\frac{1}{1-\exp (-x)} \cdot\left(\frac{1-\exp (-x)}{1-\exp (-x)}-\frac{1}{1-\exp (-x)}\right)=\sigma(x) \cdot(1-\sigma(x))
$$

We first want to obtain this $\quad \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial u_{i}}$

Backprop (toy) example (5)

$$
\frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}}
$$

$$
L(c, y)=-y \ln (c)-(1-y) \ln (1-c)
$$

$$
\frac{\partial L}{\partial c}=
$$

Backprop (toy) example (5)

$$
\frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}}
$$

$$
\begin{aligned}
& L(c, y)=-y \ln (c)-(1-y) \ln (1-c) \\
& \frac{\partial L}{\partial c}=-y \cdot \frac{1}{c}
\end{aligned}
$$

Backprop (toy) example (5)

$$
\frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}}
$$

$$
\begin{array}{r}
L(c, y)=-y \ln (c)-(1-y) \ln (1-c) \\
\frac{\partial L}{\partial c}=-y \cdot \frac{1}{c}-(1-y) \cdot \frac{1}{1-c} \cdot(-1)
\end{array}
$$

Backprop (toy) example (5)

$$
\frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}}
$$

$$
\begin{gathered}
L(c, y)=-y \ln (c)-(1-y) \ln (1-c) \\
\frac{\partial L}{\partial c}=-y \cdot \frac{1}{c}-(1-y) \cdot \frac{1}{1-c} \cdot(-1)=\frac{c-y}{c(1-c)}
\end{gathered}
$$

Backprop (toy) example (6)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
& \text { reminder } \quad \frac{d \sigma}{d x}=\sigma(x) \cdot(1-\sigma(x)) \\
& \frac{\partial c}{\partial v}=
\end{aligned}
$$

Backprop (toy) example (6)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
& \text { reminder } \quad \frac{d \sigma}{d x}=\sigma(x) \cdot(1-\sigma(x)) \\
& \frac{\partial c}{\partial v}=\frac{\partial \sigma(v)}{\partial v}
\end{aligned}
$$

Backprop (toy) example (6)

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right] \\
\text { reminder } \\
\frac{d \sigma}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
\frac{d}{d x}=\sigma(x) \cdot(1-\sigma(x) \\
\left.\frac{\partial c}{z_{1}} \begin{array}{l}
u_{1} \\
z_{2}
\end{array}\right]
\end{gathered}
$$

Backprop (toy) example (6)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
& \text { reminder } \quad \frac{d \sigma}{d x}=\sigma(x) \cdot(1-\sigma(x)) \\
& \frac{\partial c}{\partial v}=\frac{\partial \sigma(v)}{\partial v}=\sigma(v) \cdot(1-\sigma(v))
\end{aligned}
$$

Backprop (toy) example (6)

$$
\begin{aligned}
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
& \text { reminder } \quad \frac{d \sigma}{d x}=\sigma(x) \cdot(1-\sigma(x)) \\
& \frac{\partial c}{\partial v}=\frac{\partial \sigma(v)}{\partial v}=\sigma(v) \cdot(1-\sigma(v))=c \cdot(1-c)
\end{aligned}
$$

Backprop (toy) example (7)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{u a} \quad c=\sigma(v) \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
& \frac{\partial v}{\partial u_{i}}=\frac{\partial(\mathbf{u a})}{\partial u_{i}}
\end{aligned}
$$

Backprop (toy) example (7)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{u a} \quad c=\sigma(v) \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
& \frac{\partial v}{\partial u_{i}}=\frac{\partial(\mathbf{u a})}{\partial u_{i}}=\frac{\partial\left(\sum_{i=1}^{2} u_{i} \cdot a_{i}\right)}{\partial u_{i}}
\end{aligned}
$$

Backprop (toy) example (7)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v= \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}} \\
& \frac{\partial v}{\partial u_{i}}=\frac{\partial(\mathbf{u a})}{\partial u_{i}}=\frac{\partial\left(\sum_{i=1}^{2} u_{i} \cdot a_{i}\right)}{\partial u_{i}}=a_{i}
\end{aligned}
$$

Backprop (toy) example (8)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{l} \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial \nu}{\partial u_{i}} \\
& \frac{\partial L}{\partial c}=\frac{c-y}{c \cdot(1-c)} \quad \frac{\partial c}{\partial v}=c \cdot(1-c) \quad \frac{\partial v}{\partial u_{i}}=a_{i}
\end{aligned}
$$

Backprop (toy) example (8)

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{u a} \quad c=\sigma(v) \\
& \frac{\partial L}{\partial u_{i}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial u_{i}}=(c-y) \cdot a_{i} \\
& \frac{\partial L}{\partial c}=\frac{c-y}{c \cdot(1-c)} \quad \frac{\partial c}{\partial v}=c \cdot(1-c) \quad \frac{\partial v}{\partial u_{i}}=a_{i}
\end{aligned}
$$

Backprop (toy) example (9)

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
\mathbf{W}=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right] \\
\left.\frac{\mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]}{}=\frac{\mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{u a} \quad c=\sigma(v)}{\mathbf{u} w_{i j}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{u_{1}} \begin{array}{l}
u_{2}
\end{array}\right] \\
\end{gathered}
$$

$$
\frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial a_{i}} \cdot \frac{\partial a_{i}}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial w_{i j}}
$$

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{w} \\
& \frac{\partial L}{\partial w_{i j}}=\overline{\frac{\partial L}{\partial c}} \cdot \overline{\frac{\partial c}{\partial \nu}} \cdot \sqrt[\frac{\partial \nu}{\partial a_{i}}]{ } \cdot \frac{\partial a_{i}}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial w_{i j}} \\
& \frac{\partial v}{\partial a_{i}}=\frac{\partial\left(\sum_{i=1}^{2} u_{i} \cdot a_{i}\right)}{\partial a_{i}}=u_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \mathbf{z}=\mathbf{W} \mathbf{x}=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \quad \mathbf{a}=\sigma(\mathbf{z})=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \quad v=\mathbf{w} \\
& \frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial a_{i}} \cdot \cdot \frac{\partial a_{i}}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial w_{i j}} \\
& \frac{\partial v}{\partial a_{i}}=\frac{\partial\left(\sum_{i=1}^{2} u_{i} \cdot a_{i}\right)}{\partial a_{i}}=u_{i} \quad \frac{\partial a_{i}}{\partial z_{i}}=\sigma\left(z_{i}\right) \cdot\left(1-\sigma\left(z_{i}\right)\right) \\
& =a_{i} \cdot\left(1-a_{i}\right)
\end{aligned}
$$

$$
\frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial a_{i}} \cdot \cdot \frac{\partial a_{i}}{\partial z_{i}} \cdot \cdot \frac{\partial z_{i}}{\partial w_{i j}}
$$

Given that $z_{i}=\sum_{j=1}^{2} w_{i j} \cdot x_{j}$

$$
\begin{aligned}
\frac{\partial v}{\partial a_{i}}=\frac{\partial\left(\sum_{i=1}^{2} u_{i} \cdot a_{i}\right)}{\partial a_{i}}=u_{i} \quad \begin{aligned}
\frac{\partial a_{i}}{\partial z_{i}} & =\sigma\left(z_{i}\right) \cdot\left(1-\sigma\left(z_{i}\right)\right) \\
& =a_{i} \cdot\left(1-a_{i}\right)
\end{aligned}, ~
\end{aligned}
$$

$$
\frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial a_{i}} \cdot \cdot \frac{\partial a_{i}}{\partial z_{i}} \cdot \cdot \frac{\partial z_{i}}{\partial w_{i j}}
$$

$$
\frac{\partial v}{\partial a_{i}}=\frac{\partial\left(\sum_{i=1}^{2} u_{i} \cdot a_{i}\right)}{\partial a_{i}}=u_{i} \quad \begin{aligned}
\frac{\partial a_{i}}{\partial z_{i}} & =\sigma\left(z_{i}\right) \cdot(1-c \\
& =a_{i} \cdot\left(1-a_{i}\right)
\end{aligned}
$$

$$
\text { Given that } z_{i}=\sum_{j=1}^{2} w_{i j} \cdot x_{j}
$$

$$
\frac{\partial a_{i}}{\partial z_{i}}=\sigma\left(z_{i}\right) \cdot\left(1-\sigma\left(z_{i}\right)\right) \quad \frac{\partial z_{i}}{\partial w_{i j}}=x_{j}
$$

$$
\frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial c} \cdot \frac{\partial c}{\partial v} \cdot \frac{\partial v}{\partial a_{i}} \cdot \frac{\partial a_{i}}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial w_{i j}}=(c-y) \cdot u_{i} \cdot a_{i} \cdot\left(1-a_{i}\right) \cdot x_{j}
$$

$$
\text { Given that } z_{i}=\sum_{j=1}^{2} w_{i j} \cdot x_{j}
$$

$$
\begin{aligned}
\frac{\partial v}{\partial a_{i}}=\frac{\partial\left(\sum_{i=1}^{2} u_{i} \cdot a_{i}\right)}{\partial a_{i}}=u_{i} \quad \begin{aligned}
\frac{\partial a_{i}}{\partial z_{i}} & =\sigma\left(z_{i}\right) \cdot\left(1-\sigma\left(z_{i}\right)\right) \\
& =a_{i} \cdot\left(1-a_{i}\right)
\end{aligned} \quad \frac{\partial z_{i}}{\partial w_{i j}}=x_{j} \\
\end{aligned}
$$

Updating the parameters of the NN

$$
u_{i}^{\text {new }}=u_{i}^{\text {old }}-\eta \frac{\partial L}{\partial u_{i}}
$$

using a learning rate η

$$
w_{i j}^{\mathrm{new}}=w_{i j}^{\mathrm{old}}-\eta \frac{\partial L}{\partial w_{i j}}
$$

Optimisation (training)

- Stochastic gradient descent (SGD) works most of the time with some effort
\Rightarrow if we know our data / task well and can handle the learning rate (η)
- Adaptive (more sophisticated) optimisers perform generally better; keep track how much gradients change and dynamically decide how much to update the weights
- RMSProp
- $\mathbf{J}(\alpha, \beta)$ OLS
- Adaptive Moment Estimation Method (Adam)
- Adagrad
- AdaDelta
- SparseAdam
- many other variants

- We want the learning rate to be just right (not too large or small)
- Too large \Longrightarrow learning too fast: the model may diverge and not converge
- Too small \Longrightarrow learning too slow: the model will not diverge, but may take ages to converge
- ≈ 0.001 is a common starting point value for a learning rate tune it by orders of magnitude e.g. [0.01, 0.001, 0.0001$]$
- In SGD, you might want to decrease the learning rate as the training epochs increase
- In fancier optimisers (e.g. Adam) we set the initial learning rate, but then the optimiser takes care of dynamically tuning it

Next lecture

- Friday, January 26
- Word embeddings (word2vec mainly)

