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About this lecture

‣ In this lecture: 
— Introductory neural network concepts 
— Inference and training (backpropaga)on) with feedforward neural networks 

‣ Reading / Lecture partly based on: Chapter 7 of “Speech and Language Processing” 
(SLP) by Jurafsky and Mar$n (2023) — web.stanford.edu/~jurafsky/slp3/ 

‣ For those of you who want to have the slides in front of them during the lecture, 
there is a clipped / early version at lampos.net/teaching (non clipped / slightly refined 
version will be added a=er the lecture)
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The NLP view (for this lecture)
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cap)va)ng! +— Loss
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dense
today, we are 

going to be all over this, 
forth and back…
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Ar$ficial neural networks — A few introductory remarks
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‣ Ar$ficial Neural Networks (NNs)  biological neural networks 
un)l we actually obtain a complete understanding about how the 
human brain operates! 

‣ NNs are powerful learning func9ons / universal 
approximators, e.g. standard mul$-layer feedforward 
networks with as few as one hidden layer are capable of 
approxima$ng any (Borel measurable) func$on — and we are 
aware of this for almost 40 years (Hornik, S$nchcombe and 
White, 1989, doi.org/10.1016/0893-6080(89)90020-8) 

‣ NB: Good understanding of logis9c regression? Easy to 
understand today’s lecture and fundamentals about NNs in a 
few seconds. Otherwise it might take a few minutes.

≠

https://doi.org/10.1016/0893-6080(89)90020-8


Background task — Sen$ment classifica$on
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Sen9ment?

Wow, I love the sound of this acous)c guitar!

It was just another unevenNul Marvel movie! 

Can’t say I loved this performance, but I didn’t dislike it either.

      (posi*ve)⟶ +

      (nega*ve)⟶ −

  neutral⟶



Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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One neural computa$on unit (of a hidden layer)
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One neural computa$on unit (of a hidden layer)
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Ac$va$on func$ons
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Ac$va$on func$ons
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Ac$va$on func$ons
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Ac$va$on func$ons — Vanishing gradient
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‣  are differen$able, 
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‣  is almost always preferred 
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updates  (no more learning), 
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‣  ~ linear / does not have 
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One neural unit — Example
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x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5
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Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂
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In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
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The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?
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Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:
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=

1
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=
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In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?
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Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:
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In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
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The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)
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ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
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Feedforward neural network (1 layer)
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ŷ = a[2]

z[1] = W[1]a[0]

a[1] = σ1 (z[1])
z[2] = W[2]a[1]

a[2] = σ2 (z[2])
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Are nonlinear ( ) ac$va$on func$ons necessary?σ

23COMP0087 - Introduc)on to neural networks and backpropaga)on

If our ac$va$on func$ons were linear in   …ŷ = σ2(W[2] σ1(W[1]x))

ŷ = z[2]

= W[2]z[1]

= W[2]W[1]x
= W′ x

Hence, we have reduced 2 layers back to 1 with altered parameters ( ). 
This generalises to any number of layers.

W′ 

then we can simply omit the non-linear ac$va$ons  and :σ1 σ2
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Need to convert outputs to pseudo-probabili$es 
➡ common seing for  is the sohmax func$onσ2

yi = softmax (zi) =
exp (zi)

∑d
j=1 exp (zj)

, 1 ≤ i ≤ d
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yi = softmax (zi) =
exp (zi)

∑d
j=1 exp (zj)

, 1 ≤ i ≤ d

∑
i

yi = 1 and yi ∈ [0,1] pseudo-probabili)es

z[2] = [2 −1.99 −0.01]

ŷ = softmax (z[2]) = [0.868 0.016 0.116]

So, in our example if

then
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ŷ = a[2]

L (ŷ, y)

How would I use a loss func$on  
to update efficiently my NN parameters 

in  and ?

L (ŷ, y)
W[1] W[2]

Backpropaga$on 
a.k.a. 

“backprop”
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where  is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Only one of the  ’s will be equal to . The rest will be . 
If, say, , i.e.  is the correct class,  

the loss can be simplified as:

K yk 1 0
yc = 1, c = {1,…, K} c

Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc



Cross-entropy loss func$on

27COMP0087 - Introduc)on to neural networks and backpropaga)on

where  is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Only one of the  ’s will be equal to . The rest will be . 
If, say, , i.e.  is the correct class,  

the loss can be simplified as:

K yk 1 0
yc = 1, c = {1,…, K} c

Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc

= − log
exp (zc)

∑K
j=1 exp (zj)

sohmax
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df
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dg
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⋅
dh
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Chain rule:
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f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

df
dx

=
1
ax

⋅ a =
1
x

ln(ax) = ln(a) + ln(x)



Mul$dimensional chain rule
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∂b
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=
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⋅
∂b
∂a
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x∈ℝℓ

a = h(x), ℝℓ → ℝn

b = g(a), ℝn → ℝm

ℝℓ×m ℝn×mℝℓ×n
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=
∂a
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⋅
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⋮ ⋮ ⋮ ⋱ ⋮
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∂ℓ



Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ



Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]



Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]



Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduc)on to neural networks and backpropaga)on

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]



Backprop (toy) example (1)

32COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units 

‣ Just 2 inputs and 1 output (binary classifica)on) 

‣ No bias terms and different lekers used for different variables to 
simplify nota$on in upcoming slides 

‣ Sigmoid (logis)c) ac$va$on func$on everywhere

u = [u1 u2]

σ

v = ua c = σ(v)



Backprop (toy) example (1)

32COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units 

‣ Just 2 inputs and 1 output (binary classifica)on) 

‣ No bias terms and different lekers used for different variables to 
simplify nota$on in upcoming slides 

‣ Sigmoid (logis)c) ac$va$on func$on everywhere

u = [u1 u2]

σ

v = ua

We want to update  and  with respect to the loss W u L(c, y)

c = σ(v)



Backprop (toy) example (2)

33COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

L(c, y) = − [y ln (c) + (1 − y) ln (1 − c)]

z = [z1
z2] = W ⋅ x = [w11 w12

w21 w22] ⋅ [x1
x2]

zi =
2

∑
j=1

wij ⋅ xj

c = σ(v)

Cross-entropy loss 
for binary classifica$on

Understanding how a matrix 
opera$on looks like is key in 
geing the deriva$ves right



Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2

The deriva$ve of the 
sigmoid ac$va$on is neat
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34COMP0087 - Introduc)on to neural networks and backpropaga)on
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u = [u1 u2]
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v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

The deriva$ve of the 
sigmoid ac$va$on is neat



Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

The deriva$ve of the 
sigmoid ac$va$on is neat add and subtract 1



Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ ( 1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x) )

The deriva$ve of the 
sigmoid ac$va$on is neat add and subtract 1



Backprop (toy) example (3)

34COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

= σ(x) ⋅ (1 − σ(x))

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ ( 1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x) )

The deriva$ve of the 
sigmoid ac$va$on is neat add and subtract 1

σ(x)



Backprop (toy) example (4)

35COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

c = σ(v)

We first want to obtain this



Backprop (toy) example (4)

35COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

c = σ(v)

We first want to obtain this

Chain rule



Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

=

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (5)

36COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1) =

c − y
c (1 − c)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on
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z2] a = σ(z) = [a1
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u = [u1 u2]
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σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on
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= σ(v) ⋅ (1 − σ(v))

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on
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Backprop (toy) example (6)

37COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v)) = c ⋅ (1 − c)

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (7)

38COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui
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Backprop (toy) example (7)

38COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
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Backprop (toy) example (8)

39COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)



Backprop (toy) example (8)

39COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
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L (c, y)
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=
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∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)

= (c − y) ⋅ ai



Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij
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Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on
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=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui



Backprop (toy) example (9)

40COMP0087 - Introduc)on to neural networks and backpropaga)on

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai
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Upda$ng the parameters of the NN
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using a learning rate η
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Op$misa$on (training)
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‣ Stochas$c gradient descent (SGD) works most of the $me with some effort 

➡ if we know our data / task well and can handle the learning rate ( ) 

‣ Adap$ve (more sophis$cated) op$misers perform generally beker; keep track 
how much gradients change and dynamically decide how much to update the weights 
➡ RMSProp 
➡ Adap$ve Moment Es$ma$on Method (Adam) 
➡ Adagrad 
➡ AdaDelta 
➡ SparseAdam 
➡ many other variants 

η



Learning rate ( )η
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‣ We want the learning rate to be just right (not too large or small) 

‣ Too large  learning too fast: the model may diverge and not converge 

‣ Too small  learning too slow: the model will not diverge, but may take ages to 
converge 

‣  is a common star$ng point value for a learning rate 
tune it by orders of magnitude e.g.  

‣ In SGD, you might want to decrease the learning rate as the training epochs 
increase 

‣ In fancier op$misers (e.g. Adam) we set the ini$al learning rate, but then the 
op$miser takes care of dynamically tuning it

⟹

⟹

≈ 0.001
[0.01, 0.001, 0.0001]
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Next lecture

44COMP0087 - Introduc)on to neural networks and backpropaga)on

‣ Friday, January 26 

‣ Word embeddings (word2vec mainly)


