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About this lecture

‣ In this lecture: 
— Introductory neural network concepts 
— Inference and training (backpropagation) with feedforward neural networks 

‣ Reading / Lecture partly based on: Chapter 7 of “Speech and Language Processing” 
(SLP) by Jurafsky and Martin (2023) — web.stanford.edu/~jurafsky/slp3/ 

‣ For those of you who want to have the slides in front of them during the lecture, 
there is a clipped / early version at lampos.net/teaching (non clipped / slightly refined 
version will be added after the lecture)
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Ar$ficial neural networks — A few introductory remarks
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‣ Artificial Neural Networks (NNs)  biological neural networks 
until we actually obtain a complete understanding about how the 
human brain operates! 

‣ NNs are powerful learning functions / universal 
approximators, e.g. standard multi-layer feedforward 
networks with as few as one hidden layer are capable of 
approximating any (Borel measurable) function — and we are 
aware of this for almost 40 years (Hornik, Stinchcombe and 
White, 1989, doi.org/10.1016/0893-6080(89)90020-8) 

‣ NB: Good understanding of logistic regression? Easy to 
understand today’s lecture and fundamentals about NNs in a 
few seconds. Otherwise it might take a few minutes.

≠

https://doi.org/10.1016/0893-6080(89)90020-8


Background task — Sen$ment classifica$on
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Sentiment?

Wow, I love the sound of this acoustic guitar!

It was just another uneventful Marvel movie! 

Can’t say I loved this performance, but I didn’t dislike it either.

      (positive)⟶ +

      (negative)⟶ −

  neutral⟶



Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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One neural computa$on unit (of a hidden layer)
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One neural computa$on unit (of a hidden layer)

13COMP0087 - Introduction to neural networks and backpropagation

x = [x1 … xn] w =
w1
⋮
wn

 w ∈ ℝn

b ∈ ℝ

x2

⋮

xn

x1

Input NN unit

weights

bias

x ∈ ℝn

love

the

guitar

…



One neural computa$on unit (of a hidden layer)
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16COMP0087 - Introduction to neural networks and backpropagation

z = x ⋅ w

x2

⋮

xn

x1

zw



Ac$va$on func$ons

16COMP0087 - Introduction to neural networks and backpropagation

z = x ⋅ w

x2

⋮

xn

x1

zw g(z)

a

activation 
function



Ac$va$on func$ons

16COMP0087 - Introduction to neural networks and backpropagation

z = x ⋅ w

x2

⋮

xn

x1

zw g(z)

σ(z) =
1

1 + exp(−z)
= a

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

= a

ReLU(z) = max (z,0) = a rectified 
linear unit

sigmoid 
logistic

hyperbolic 
tangent

a

activation 
function



Ac$va$on func$ons

17COMP0087 - Introduction to neural networks and backpropagation

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))



Ac$va$on func$ons

17COMP0087 - Introduction to neural networks and backpropagation

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

tanh ∈ (−1,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
tanh(z)



Ac$va$on func$ons

17COMP0087 - Introduction to neural networks and backpropagation

σ(z) =
1

1 + exp(−z)

σ ∈ (0,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
<(z))

tanh(z) =
exp(z) − exp(−z)
exp(z) + exp(−z)

tanh ∈ (−1,1)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
tanh(z)

ReLU(z) = max (z,0)

ReLU ∈ (0, +∞)

-3 -2 -1 0 1 2 3
z

-1

-0.5

0

0.5

1

1.5

2

2.5

3
ReLU(z)



Ac$va$on func$ons — Vanishing gradient
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σ ∈ (0,1)

tanh ∈ (−1,1)

ReLU ∈ (0, +∞)

‣  are differentiable, 
 not differentiable at  

‣  is almost always preferred 
to , more expansive mapping 

‣ if ,  become 
saturated, i.e.  with 
derivatives   gradient 
updates  (no more learning), 
vanishing gradient issue 

‣  ~ linear / does not have 
this vanishing gradient issue

σ,  tanh
ReLU 0
tanh

σ
z >> 0 σ and tanh

≈ 1
≈ 0 →

≈ 0
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One neural unit — Example

19COMP0087 - Introduction to neural networks and backpropagation

x = [0.5 0.6 0.1]
w = [0.2 0.3 0.9]
b = 0.5

136 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

Fig. 7.2 shows a final schematic of a basic neural unit. In this example the unit
takes 3 input values x1,x2, and x3, and computes a weighted sum, multiplying each
value by a weight (w1, w2, and w3, respectively), adds them to a bias term b, and then
passes the resulting sum through a sigmoid function to result in a number between 0
and 1.

x1

x2

x3

y

w1

w2

w3
∑

b

σ

+1

z a

Figure 7.2 A neural unit, taking 3 inputs x1, x2, and x3 (and a bias b that we represent as a
weight for an input clamped at +1) and producing an output y. We include some convenient
intermediate variables: the output of the summation, z, and the output of the sigmoid, a. In
this case the output of the unit y is the same as a, but in deeper networks we’ll reserve y to
mean the final output of the entire network, leaving a as the activation of an individual node.

Let’s walk through an example just to get an intuition. Let’s suppose we have a
unit with the following weight vector and bias:

w = [0.2,0.3,0.9]

b = 0.5

What would this unit do with the following input vector:

x = [0.5,0.6,0.1]

The resulting output y would be:

y = s(w ·x+b) =
1

1+ e�(w·x+b)
=

1
1+ e�(.5⇤.2+.6⇤.3+.1⇤.9+.5)

=
1

1+ e�0.87 = .70

In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
ez � e�z

ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂
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In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
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ez + e�z (7.5)

The simplest activation function, and perhaps the most commonly used, is the rec-
tified linear unit, also called the ReLU, shown in Fig. 7.3b. It’s just the same as zReLU
when z is positive, and 0 otherwise:

y = ReLU(z) = max(z,0) (7.6)

These activation functions have different properties that make them useful for differ-
ent language applications or network architectures. For example, the tanh function
has the nice properties of being smoothly differentiable and mapping outlier values
toward the mean. The rectifier function, on the other hand, has nice properties that

̂ z = ?
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In practice, the sigmoid is not commonly used as an activation function. A function
that is very similar but almost always better is the tanh function shown in Fig. 7.3a;tanh
tanh is a variant of the sigmoid that ranges from -1 to +1:

y = tanh(z) =
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when z is positive, and 0 otherwise:
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Feedforward neural network (1 layer)
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Feedforward neural network (2 layers, mul$ple outputs)
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Feedforward neural network (2 layers, mul$ple outputs)
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ŷ = a[2]

x, a[0] ∈ℝn+1
Dimensionalities?



Feedforward neural network (2 layers, mul$ple outputs)

21COMP0087 - Introduction to neural networks and backpropagation

decoder

x = a[0]lookuplove

the

guitar

lookup

lookup

…

…

…

+

… … … …pooling …

W[1]
n m

encoder

activation output 
layer

hidden 
layer

…

m

σ1
3

σ2

z[1] a[1]

W[2]

z[2]

̂y1

̂y2

̂y3
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Are nonlinear ( ) ac$va$on func$ons necessary?σ

23COMP0087 - Introduction to neural networks and backpropagation

If our activation functions were linear in   …ŷ = σ2(W[2] σ1(W[1]x))

ŷ = z[2]

= W[2]z[1]

= W[2]W[1]x
= W′￼x

Hence, we have reduced 2 layers back to 1 with altered parameters ( ). 
This generalises to any number of layers.

W′￼

then we can simply omit the non-linear activations  and :σ1 σ2
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, 1 ≤ i ≤ d
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yi = softmax (zi) =
exp (zi)

∑d
j=1 exp (zj)

, 1 ≤ i ≤ d

∑
i

yi = 1 and yi ∈ [0,1] pseudo-probabilities

z[2] = [2 −1.99 −0.01]

ŷ = softmax (z[2]) = [0.868 0.016 0.116]

So, in our example if

then
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ŷ = a[2]

L (ŷ, y)

How would I use a loss function  
to update efficiently my NN parameters 

in  and ?

L (ŷ, y)
W[1] W[2]

Backpropagation 
a.k.a. 

“backprop”
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Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc



Cross-entropy loss func$on

27COMP0087 - Introduction to neural networks and backpropagation

where  is the number of output classesK

Lce (ŷ, y) = −
K

∑
k=1

yk log ̂ykCross-entropy loss

Only one of the  ’s will be equal to . The rest will be . 
If, say, , i.e.  is the correct class,  

the loss can be simplified as:

K yk 1 0
yc = 1, c = {1,…, K} c

Lce (ŷ, y) = − yc ⋅ log ̂yc = − log ̂yc

= − log
exp (zc)

∑K
j=1 exp (zj)

softmax
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df
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f(x) = g(h(x))

df
dx

=
dg
dh

⋅
dh
dx

f(x) = (x2 + 1)2 = g(h(x)) ??

g(x) = x2h(x) = x2 + 1 and

Chain rule:

df
dx

= 2(x2 + 1) ⋅ 2x

f(x) = ln(ax) = g(h(x))
g(x) = ln(x)h(x) = ax and

df
dx

=
1
ax

⋅ a =
1
x

ln(ax) = ln(a) + ln(x)



Mul$dimensional chain rule
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x∈ℝℓ

a = h(x), ℝℓ → ℝn

b = g(a), ℝn → ℝm

ℝℓ×m ℝn×mℝℓ×n

∂b
∂x

=
∂a
∂x

⋅
∂b
∂a
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x∈ℝℓ

a = h(x), ℝℓ → ℝn

b = g(a), ℝn → ℝm

ℝℓ×m ℝn×mℝℓ×n

∂b
∂x

=
∂a
∂x

⋅
∂b
∂a

∂b1

∂a1

∂b2

∂a1

∂b3

∂a1
⋯

∂bm

∂a1

∂b1

∂a2

∂b2

∂a2

∂b3

∂a2
⋯

∂bm

∂a2

∂b1

∂a3

∂b2

∂a3

∂b3

∂a3
⋯

∂bm

∂a3

⋮ ⋮ ⋮ ⋱ ⋮
∂b1

∂an

∂b2

∂an

∂b3

∂an
⋯

∂bm

∂an
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∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]



Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation
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n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]



Backprop and the chain rule in mul$ple dimensions

31COMP0087 - Introduction to neural networks and backpropagation

… …

n m

a[0]

ℝn

Lce

ℓ = − log(a[2])

ℝ

a[1] = σ(z[1])
ℝm

z[1] = W[1] a[0]

a[2] = σ(z[2])
ℝ

z[2] = w[2] a[1]

∂ℓ
∂w[2]

i
= ???

∂ℓ
∂W[1]

ij
= ???

∂ℓ
∂W[1]

ij
=

∂ℓ
∂a[2]

⋅
∂a[2]

∂z[2]
⋅

∂z[2]

∂a[1]
i

⋅
∂a[1]

i

∂z[1]
i

⋅
∂z[1]

i

∂W[1]
ij

∂ℓ
∂z[2]

=
∂a[2]

∂z[2]
⋅

∂ℓ
∂a[2]

∂ℓ
∂ℓ

= 1
∂ℓ

∂a[2]
=

∂ℓ
∂a[2]

⋅
∂ℓ
∂ℓ

∂ℓ
∂w[2]

i
=

∂z[2]

∂w[2]
i

⋅
∂ℓ

∂z[2]



Backprop (toy) example (1)

32COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units 

‣ Just 2 inputs and 1 output (binary classification) 

‣ No bias terms and different letters used for different variables to 
simplify notation in upcoming slides 

‣ Sigmoid (logistic) activation function everywhere

u = [u1 u2]

σ

v = ua c = σ(v)



Backprop (toy) example (1)

32COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

‣ Feedforward NN with 2 layers with 2 and 1 units 

‣ Just 2 inputs and 1 output (binary classification) 

‣ No bias terms and different letters used for different variables to 
simplify notation in upcoming slides 

‣ Sigmoid (logistic) activation function everywhere

u = [u1 u2]

σ

v = ua

We want to update  and  with respect to the loss W u L(c, y)

c = σ(v)



Backprop (toy) example (2)

33COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

L(c, y) = − [y ln (c) + (1 − y) ln (1 − c)]

z = [z1
z2] = W ⋅ x = [w11 w12

w21 w22] ⋅ [x1
x2]

zi =
2

∑
j=1

wij ⋅ xj

c = σ(v)

Cross-entropy loss 
for binary classification

Understanding how a matrix 
operation looks like is key in 
getting the derivatives right



Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2

The derivative of the 
sigmoid activation is neat



Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

The derivative of the 
sigmoid activation is neat



Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

The derivative of the 
sigmoid activation is neat add and subtract 1



Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ ( 1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x) )

The derivative of the 
sigmoid activation is neat add and subtract 1



Backprop (toy) example (3)

34COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua c = σ(v)

= σ(x) ⋅ (1 − σ(x))

σ(x) =
1

1 − exp(−x)

dσ
dx

=
−exp(−x)

(1 − exp(−x))2 =
1

1 − exp(−x)
⋅

−exp(−x)
1 − exp(−x)

=
1

1 − exp(−x)
⋅

1 − exp(−x) − 1
1 − exp(−x)

=
1

1 − exp(−x)
⋅ ( 1 − exp(−x)

1 − exp(−x)
−

1
1 − exp(−x) )

The derivative of the 
sigmoid activation is neat add and subtract 1

σ(x)



Backprop (toy) example (4)

35COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

c = σ(v)

We first want to obtain this



Backprop (toy) example (4)

35COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

c = σ(v)

We first want to obtain this

Chain rule



Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

=

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (5)

36COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂L
∂c

= −y ⋅
1
c

−(1 − y) ⋅
1

1 − c
⋅ (−1) =

c − y
c (1 − c)

L(c, y) = − y ln (c) − (1 − y) ln (1 − c)



Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v))

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v))

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (6)

37COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂c
∂v

=
∂σ(v)

∂v
= σ(v) ⋅ (1 − σ(v)) = c ⋅ (1 − c)

dσ
dx

= σ(x) ⋅ (1 − σ(x))reminder



Backprop (toy) example (7)

38COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui



Backprop (toy) example (7)

38COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui
=

∂ (∑2
i=1 ui ⋅ ai)
∂ui



Backprop (toy) example (7)

38COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

=
∂(ua)

∂ui
=

∂ (∑2
i=1 ui ⋅ ai)
∂ui

= ai



Backprop (toy) example (8)

39COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)



Backprop (toy) example (8)

39COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂ui

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ui

∂v
∂ui

= ai
∂c
∂v

= c ⋅ (1 − c)
∂L
∂c

=
c − y

c ⋅ (1 − c)

= (c − y) ⋅ ai



Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij



Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij



Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui



Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)



Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

zi =
2

∑
j=1

wij ⋅ xjGiven that



Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

∂zi

∂wij
= xj

zi =
2

∑
j=1

wij ⋅ xjGiven that



Backprop (toy) example (9)

40COMP0087 - Introduction to neural networks and backpropagation

x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

∂L
∂wij

=
∂L
∂c

⋅
∂c
∂v

⋅
∂v
∂ai

⋅
∂ai

∂zi
⋅

∂zi

∂wij

∂v
∂ai

=
∂ (∑2

i=1 ui ⋅ ai)
∂ai

= ui
∂ai

∂zi
= σ(zi) ⋅ (1 − σ(zi))
= ai ⋅ (1 − ai)

∂zi

∂wij
= xj

zi =
2

∑
j=1

wij ⋅ xjGiven that

= (c − y) ⋅ ui ⋅ ai ⋅ (1 − ai) ⋅ xj



Upda$ng the parameters of the NN
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x = [x1
x2]

W = [w11 w12
w21 w22]

σ

z = Wx = [z1
z2] a = σ(z) = [a1

a2]
L (c, y)

u = [u1 u2]

c = σ(v)

σ

v = ua

unew
i = uold

i − η
∂L
∂ui

wnew
ij = wold

ij − η
∂L
∂wij

using a learning rate η
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‣ Stochastic gradient descent (SGD) works most of the time with some effort 

➡ if we know our data / task well and can handle the learning rate ( ) 

‣ Adaptive (more sophisticated) optimisers perform generally better; keep track 
how much gradients change and dynamically decide how much to update the weights 
➡ RMSProp 
➡ Adaptive Moment Estimation Method (Adam) 
➡ Adagrad 
➡ AdaDelta 
➡ SparseAdam 
➡ many other variants 

η



Learning rate ( )η
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‣ We want the learning rate to be just right (not too large or small) 

‣ Too large  learning too fast: the model may diverge and not converge 

‣ Too small  learning too slow: the model will not diverge, but may take ages to 
converge 

‣  is a common starting point value for a learning rate 
tune it by orders of magnitude e.g.  

‣ In SGD, you might want to decrease the learning rate as the training epochs 
increase 

‣ In fancier optimisers (e.g. Adam) we set the initial learning rate, but then the 
optimiser takes care of dynamically tuning it

⟹

⟹

≈ 0.001
[0.01, 0.001, 0.0001]
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Next lecture
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‣ Friday, January 26 

‣ Word embeddings (word2vec mainly)


