Statistical Natural Language Processing [COMPO087]

Introduction to neural networks
and backpropagation

Vasileios Lampos
Computer Science, UCL

Bl onpos.net


https://lampos.net

About this lecture

» In this lecture:

— Introductory neural network concepts
— Inference and training (backpropagation) with feedforward neural networks

» Reading / Lecture partly based on: Chapter 7 of “Speech and Language Processing”
(SLP) byJurafsky and Martin (2023) — web.stanford.edu/~jurafsky/slp3/

» For those of you who want to have the slides in front of them during the lecture,
there is a clipped / early version at lampos.net/teaching (non clipped / slightly refined
version will be added after the lecture)
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Artificial neural networks — A few introductory remarks

» Artificial Neural Networks (NNs) = biological neural networks

until we actually obtain a complete understanding about how the
human brain operates!

» NNs are powerful learning functions / universal
approximators, e.g. standard multi-layer feedforward
networks with as few as one hidden layer are capable of
approximating any (Borel measurable) function — and we are

aware of this for almost 40 years (Hornik, Stinchcombe and
White, 1989, doi.org/10.1016/0893-6080(89)20020-8)

» NB: Good understanding of logistic regression? Easy to
understand today’s lecture and fundamentals about NNs in a
few seconds. Otherwise it might take a few minutes.
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Background task — Sentiment classification

Sentiment?
Wow, | love the sound of this acoustic guitar! —> 4+ (positive)
It was just another uneventful Marvel movie! —— — (negative)

Can't say | loved this performance, but | didn’t dislike it either.  —— neutral
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture
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Neural network — A simplified encoder—decoder architecture

+ 1 for the bias terms
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Neural network — A simplified encoder—decoder architecture
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One neural computation unit (of a hidden layer)
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One neural computation unit (of a hidden layer)
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One neural computation unit (of a hidden layer)
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One neural computation unit (of a hidden layer)
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Activation functions
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Activation functions
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Activation functions

1 - -
o(z) = — s:grpo!d
@ activation 1 + exp(—z2) logistic
@ function
f tanh(z) = eXp(z) — exp(=2) _ ., hyperbolic
‘ ‘@ a @ @) exp(z) + exp(—2z) tangent
Z7=X"W a
@ RelLU(z) = max (z,0) = a .r ectlfled.
linear unit
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Activation functions
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Activation functions

. o(2)) | | | | I: . :I—tanh(zl)
0.5: // : 0.5:
1 — —
o) = tanh(z) = exp(z) — exp(—2)
1 4+ exp(—2z) exp(z) + exp(—2z)
6 €(0.1) tanh €(—1,1)
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Activation functions

3 T I I I I T 3 T I I I I T 3 T I

. —(2)) - — tanh(2) [ —ReLU(2)
0.5: // : 0.5: 0.5:
| exp(z) — exp(—z
0(2) = tanh(z) = P(2) P(=2) ReLLU(z) = max (z,0)
1 4+ exp(—2z) exp(z) + exp(—2z)
o €(0,]) tanh €(—1,1) RelLU € (0, +o0)
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Activation functions — Vanishing gradient

3—I I I I I —

0(z))
tanh(z) ReLU(z) = max (z.0) 1 » o, tanh are differentiable,

- Rel .U not differentiable at O

» tanh is almost always preferred
to o, more expansive mapping

» if z >> 0, 0 and tanh become
saturated, i.e. &~ 1 with
derivatives ~ () — gradient

_exp(z) — exp(—z)
B exp(z) + elxp(—z)

[P P ) ; , ; updates = O (no more learning),
z vanishing gradient issue
o €(0,1)
tanh € (= 1.1) » RelLU ~ linear / does not have

this vanishing gradient issue
ReLLU € (0, + o0)
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One neural unit — Example

x =[0.5 0.6 0.1]
w =10.2 0.3 0.9]
b=0.5
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One neural unit — Example

x =[0.5 0.6 0.1]

w = [0.2 0.3 0.9]
AWy b=0.5
z="7
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One neural unit — Example

X i [8; 82 8;] -------- X X = [1 0.5 0.6 01]
w =1[0.2 0.3 0.9] bias W =1[0.50.20.30.9]
4w b=0.5
z="

COMPOO08Y7 - Introduction to neural networks and backpropagation 19



One neural unit — Example

ngggggg C x=[105060.1]

w=[020309] --------

b= 0.5 hias W =[0.502030.9]
z="1

z=X-w=1-05405-02+...40.1-09=0.87
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One neural unit — Example

ngggggg C x=[105060.1]

w=[020309] --------

b= 0.5 hias W =[0.502030.9]
z="1

z=X-w=1-05405-02+...40.1-09=0.87

1
 l+exp(=z) 1 +exp(—0.87)

y=a=o0(2) = (.705
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Feedforward neural network (1 layer)
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— A feedforward NN has: input units, hidden units, and output units
— Fully connected (standard version)
— This NN has 1 layer (input layer does not count)
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Feedforward neural network (1 layer)
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m = 1 what is this NN
~equivalent to?

— A feedforward NN has: input units, hidden units, and output units
— Fully connected (standard version)
— This NN has 1 layer (input layer does not count)
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Feedforward neural network (2 layers, multiple outputs)
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Feedforward neural network (2 layers, multiple outputs)
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Dimensionalities?
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Feedforward neural network (2 layers, multiple outputs)
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Dimensionalities?

alll = o, (1)

a2l = 5, (z12))

§ = ql?]
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Feedforward neural network (2 layers, multiple outputs)
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Feedforward neural network (2 layers, multiple outputs)
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Feedforward neural network (2 layers, multiple outputs)
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Feedforward neural network (2 layers, multiple outputs)
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Feedforward neural network (2 layers, multiple outputs)
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Feedforward neural network (2 layers, multiple outputs)
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Are nonlinear (o) activation functions necessary?

If our activation functions were linear in § = GZ(W[Z] al(W[”X)>
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Are nonlinear (o) activation functions necessary?

If our activation functions were linear in § = 02(W[2] al(W[”X)>
then we can simply omit the non-linear activations ¢, and o,:
§ = 712]
— Wi2l,[1]

— Wl2wlllx
= W'

Hence, we have reduced 2 layers back to 1 with altered parameters (W').
This generalises to any number of layers.
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Inference with a feedforward neural network — Softmax

love QQQQ ql1] 7121 5‘, — ql?]
@!
theQQQ”‘Q\ > &
: : pooling @ : % @ %
(5
8uitar©©©'”© wH
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Need to convert outputs to pseudo-probabilities
= common setting for o, Is the softmax function

y; = softmax (zl-) = P (Zi) , 1<i<d

Z;il CAP (Zj>
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Softmax example

y; = softmax (Z,-) _ (Zi> , 1 <i<d

z]il CXP (Zj>

Zyl:l and y.€[0,1] pseudo-probabilities

So, in our example if

Z2=[2 -1.99 —0.01]

then

Vo

§ = softmax (z/*') = [0.868 0.016 0.116]
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Training a feedforward neural network
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Training a feedforward neural network
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How would | use a loss function L ()A’, Y)

to update efficiently my NN parameters
in WL and W22
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Training a feedforward neural network
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Cross-entropy loss function

K
Cross-entropy loss Lee (§.y) = - Z Yi log y;
k=1

where K is the number of output classes
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Cross-entropy loss function

K
Cross-entropy loss Lee (§.y) = — Z v, log 9,
k=1
where K is the number of output classes

Only one of the K y,’s will be equal to 1. The rest will be 0.

If,say,y. = 1,c = {1,..., K}, i.e. cis the correct class,
the loss can be simplified as:

Lee (§.y) = —y. - logd, = —log$,
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Cross-entropy loss function

K
Cross-entropy loss Lee (§.y) = — Z v, log 9,
k=1
where K is the number of output classes

Only one of the K y,’s will be equal to 1. The rest will be 0.

If,say,y. = 1,c = {1,..., K}, i.e. cis the correct class,
the loss can be simplified as:

Lee (§.y) = —y. - logd, = —log$,

exp (z.) JRSUSEEEE softmax

ZjK=1 AP (Zj )

= — log
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Backpropagation uses the chain rule

f(x0) = g(hx))

df dg dh
dx dh dx

Chain rule:
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Backpropagation uses the chain rule

f(x0) = g(hx))

df dg dh
dx dh dx

Chain rule:

fx) = (@ + 1)* = g(h(x)) ??
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Backpropagation uses the chain rule

f(x0) = g(hx))

df dg dh
dx dh dx

Chain rule:

fx) = (@ + 1)* = g(h(x)) ??

h(x) =x*+1 and g(x) = x?

COMPOO08Y7 - Introduction to neural networks and backpropagation 28



Backpropagation uses the chain rule

f(x0) = g(hx))

df dg dh
dx dh dx

Chain rule:

fx) = (@ + 1)* = g(h(x)) ??
h(x) =x*+1 and g(x) = x?

ﬁ:z(xzﬂ)-zx

dx
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Backpropagation uses the chain rule

f(x0) = g(hx))

, | ﬁ ~ dg | dh
Chain rule: T
f@) = @@+ D? = g(hv) 22 fx) = In(ax) = g (h())
W =x’+1 and gy =2  hW=ar and g =In(
Y o412
dx
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Backpropagation uses the chain rule

f(x0) = g(hx))

o df dg dh
Chain rule: T
fo) = 2+ 17 = g(h(v) 22 f(x) = In(ax) = g(h(x))
W =x’+1 and gy =2  hW=ar and g =In(
ﬁ:z(xzﬂ)-zx ﬁ=i-a=l
dx dx ax X
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Backpropagation uses the chain rule

f(x0) = g(hx))

o df dg dh
Chain rule: T
fo) = 2+ 17 = g(h(v) 22 f(x) = In(ax) = g(h(x))
W =x’+1 and gy =2  hW=ar and g =In(
ﬁ:z(xzﬂ)-zx ﬁ=i-a=l
dx dx ax X

In(ax) = In(a) + In(x)
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Multidimensional chain rule
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xeR’
a=hx), Rl > R”
b=g@), R" > R"™

Rme

db
9).¢
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in a 1-dimensional NN

or 0z 65 of oda O of

. w w ‘-a—z:a—za‘—gwy"ﬁ

. o
Q>‘ @ o—(«—M0 |G=
@ l

X — I=W-X — a=o0(z) =p =-loga)

R" R R R

COMPO0OO087 - Introduction to neural networks and backpropagation 30



Backprop and the chain rule in a 1-dimensional NN
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Backprop and the chain rule in multiple dimensions
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Backprop and the chain rule in multiple dimensions
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Backprop and the chain rule in multiple dimensions

ce

&

a0l w1 = Wil 4[0]

alll = 5(z!1))

Rl’l Rm

COMPOO08Y7 - Introduction to neural networks and backpropagation 31



Backprop and the chain rule in multiple dimensions

ce

&

a0l e = W40l ey 121 = 20 (1]

alll = 5(z!1)) a? = o(z12)

R" R™ R

COMPOO08Y7 - Introduction to neural networks and backpropagation 31



Backprop and the chain rule in multiple dimensions

a0l = W0l ey 2= W2 ey 2= _og(q?)

alll = 5(z!1)) a? = o(z12)

R" R™ R R
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Backprop and the chain rule in multiple dimensions

(Tee) O
| f > ~— 0t
: = 999

ow!?]
q[0] — 2= W0 w721 = w2l ey 2 = _ Jog(a?) ‘
alll = o(z!")) a? = 5(2) 0 _ 999
oW!!!

Y

R" R™ R R
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Backprop and the chain rule in multiple dimensions
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q(0] — 2= W0 w721 = w2l ey 2 = _ Jog(a?) ’
alll = o(z!")) a? = 5(2) 0 _ 999
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Backprop and the chain rule in multiple dimensions

of  da*l o of  of o ot
= « = = =1
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5 : af
” L = 299
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all = U= WO ey 2= w2l ey 2= —og(q?) ’
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Backprop and the chain rule in multiple dimensions

ot ol of of  da*  of of  of Of ot
: — : « — . é — ¢ — é —_— — 1
ow?l  owlsl  0zl2 0zI21 07121 9al? oal2l  0al2l ot 0t
: : af
” L = 299
owl?
a0l = WO e 2= w20 ey 2= —og(q?) ’
OW!,
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Backprop and the chain rule in multiple dimensions

o of aad? o7? oall  ozlM
OWIT — 9all " 9z galll ozl oWl

ot ol of of  da*  of of  of Of ot
21~ Awl2l < = | - = - = — =1
ow?l  owlsl  0zl2 0zI21 07121 9al? oal2l  0al2l ot 0t
: : af
” Z = 299
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Backprop and the chain rule in multiple dimensions
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Backprop (toy) example (1)

» Feedforward NN with 2 layers with 2 and 1 units

» Just 2 inputs and 1 output (binary classification)

» No bias terms and different letters used for different variables to
simplify notation in upcoming slides

» Sigmoid (logistic) activation function everywhere
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Backprop (toy) example (1)

» Feedforward NN with 2 layers with 2 and 1 units

» Just 2 inputs and 1 output (binary classification)

» No bias terms and different letters used for different variables to
simplify notation in upcoming slides

» Sigmoid (logistic) activation function everywhere
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Backprop (toy) example (2)

f Crpss—entrop.y Ios§ Lic.y) = — |yIn (o) + (1 B y) In(1 - ¢)
or binary classification _ _
Understanding how a matrix 7= [2] =W-x= [x; :22] : [2]
operation looks like is key in
getting the derivatives right 2
4 = Z Wij * X
=1
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Backprop (toy) example (3)

The derivative of the —
o en e o(x) =
sigmoid activation is neat ] — exp(—x)

do  —exp(=x)
dx (1 — exp(—x))2
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Backprop (toy) example (3)

The derivative of the —
o en e o(x) =
sigmoid activation is neat ] — exp(—x)

ﬁ - —exp(—x) B | | —exp(—x)
dx (1 _ exp(—x))2 1 —exp(—x) 1 —exp(—x)
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Backprop (toy) example (3)

The derivative of the —
o en e o(x) =
sigmoid activation is neat ] — exp(—x)

add and subtract 1

SN

ﬁ - —exp(—x) B | | —exp(—x) B | | 1 —exp(—x)—1
dx (1 _ exp(—x))2 1 —exp(—x) 1 —exp(—x) 1 — exp(—x) 1 — exp(—x)
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Backprop (toy) example (3)

| The.deriv.ativ.e of. the o(x) =
sigmoid activation is neat 1 — exp(—x) add and subtract 1
do —exp(—x) 1 —exp(—x) 1 1 —exp(—x) -1

dx (1 _ exp(—x))2 1 — exp(—x) 1 - exp(—x) T 1- exp(—x) - exp(—x)

1 | ( 1 — exp(—x) | )
1 —exp(—x) I —exp(—x) 1 —exp(—x)
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Backprop (toy) example (3)

The derivative of the
sigmoid activation is neat

do —exp(—x)

dx (1 — exp(—x))2

o(x) =

1 — exp(—x) add and subtract 1

| —exp(—x)

1 —exp(—x) 1 - exp(—x)

SN

B 1 | 1 —exp(—x)—1
11— exp(—x) 1 —exp(—x)

| ( 1 — exp(—x)

1 —exp(—x)

o(x)

-

o(x) - (1 = o(x))
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Backprop (toy) example (4)

oL B doL. oOc

We first want to obtain this ()_u, = ’ ()_ul
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Backprop (toy) example (4)

: : ol. oL oc
We first want to obtain this — = —
ou; dc O,

hai | B oL. oc Oov

Chain rule = o
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Backprop (toy) example (5)

oL |dL| oc ov

ou; ()c.g.@_ui

L(c,y)=—yIn(c)— (1 —=y)In(1 —¢)

oL
ac

COMPO0OO087 - Introduction to neural networks and backpropagation 36



Backprop (toy) example (5)

oL |dL| oc ov

ou; 66.5.6_%-

L(c,y)=—yIn(c)— (1 —=y)In(1 —¢)
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Backprop (toy) example (5)

oL |dL| oc ov

ou; 66.5.6_%-

L(c,y)=—yIn(c)— (1 —=y)In(1 —¢)

=y (1)) ]
oc Y C g 1 —-c
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Backprop (toy) example (5)

oL |dL| oc ov

ou; 66.5.6_%-

L(c,y)=—yIn(c)— (1 —=y)In(1 —¢)

oL 1 1 cC—Yy

dc __y.?_(l_y).l—c .(_l)zc(l—c)
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Backprop (toy) example (6)

ind 0 = 1
reminder  —- = o(x) - (1 - o(x))

ac
adv
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Backprop (toy) example (6)

ind ~ = 06(x) - (1 = o(x))

reminaer 7 = O\X o\X
ﬁ_ do(v)
dv_ oV
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Backprop (toy) example (6)

ind 0 = 1
reminder  —- = o(x) - (1 - o(x))

dc do(v)

= = o(v) - (1 —o(v))
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Backprop (toy) example (6)

ind 0 = 1
reminder  —- = o(x) - (1 - o(x))

dc do(v)

= = o(v) - (1 —o(v))
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Backprop (toy) example (6)

ind 0 = 1
reminder  —- = o(x) - (1 - o(x))

dc do(v)

—= —— =0 (1-oM)=c-(1-0)

COMPOO08Y7 - Introduction to neural networks and backpropagation 37



Backprop (toy) example (7)

oL oL oc |ov
ou; dc ov |ou

ﬂ ~ d(ua)
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Backprop (toy) example (7)

oL oL oc |ov
ou; dc ov |ou

v oua) "(Zil’f‘i ‘ “i)

l
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Backprop (toy) example (7)

oL oL oc |ov
ou; dc ov |ou

v oua) "(Zil’f‘i ‘ “i)

l
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Backprop (toy) example (8)
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Backprop (toy) example (8)
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Backprop (toy) example (9)

oL JdL dc odv da; 0z

ow; oc Ov oa; 0z Oow,
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Backprop (toy) example (9)

oL |dL||oc| odv oa; 0z
ow;; |dc||dv| da; 0z Ow;
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Backprop (toy) example (9)

oL |dL||oc||dv| oa; 0z
ow; |dc||0v||da;| dz; Ow
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Backprop (toy) example (9)

oL |0dL||oc||odv| |oa;| Oz
ow;: |dc||0v||0da;| |0z;| Ow
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Backprop (toy) example (9)

oL |0L||dc||ov| |0a;| | 0z
ow;; |dc||0v||0da;| |0z |ow

2
Given that z; = Z Wii * X;
2 j=1
v ( 2 Ui ai) oa;
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Backprop (toy) example (9)

oL |0L||dc||ov| |0a;| | 0z
ow;; |dc||0v||0da;| |0z |ow

2
Given that z; = Z Wii * X;

> i=1
oV 0 ( zi=1 " ai) oa. 0z,

FY = U, — = 6(z;) - (1 — a(zi)) — = X;
ij
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Backprop (toy) example (9)

oL JdL dc odv da; 0z |
dwlj_ dc  0v oa; 07; Ow; —(C—y)-ui-ai-( _ai)'xj

2
Given that z; = Z Wii * X;

> i=1
oV 0 ( zi=1 " ai) oa. 0z,

FY = U, — = 6(z;) - (1 — a(zi)) — = X;
ij
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Updating the parameters of the NN

X = [ﬁl] z=Wx = [2] a=o0(z) = [Zl] Vv =ua ¢ =o(v)

(O~

oL
ulnew — uiold —7
al/ll'
using a learning rate 7
oL
Wl_qew — ngd —7
/ / ow
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Optimisation (training)

» Stochastic gradient descent (SGD) works most of the time with some effort

= if we know our data / task well and can handle the learning rate ()

» Adaptive (more sophisticated) optimisers perform generally better; keep track
how much gradients change and dynamically decide how much to update the weights

= RM>Prop I L .
= Adaptive Moment Estimation Method (Adam)

= Adagrad 0.16 -

= AdaDelta

= SparseAdam

= many other variants
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Learning rate ()

We want the learning rate to be just right (not too large or small)

Too large =— learning too fast: the model may diverge and not converge

Too small = learning too slow: the model will not diverge, but may take ages to
converge

~ (0.001 is a common starting point value for a learning rate
tune it by orders of magnitude e.g. [0.0l, 0.001, O.()()()l]

In SGD, you might want to decrease the learning rate as the training epochs
Increase

In fancier optimisers (e.g. Adam) we set the initial learning rate, but then the
optimiser takes care of dynamically tuning it
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Next lecture

» Friday, January 26

» Word embeddings (word2vec mainly)

W e R™4
lookup

Hey——> OO O
3 Jude——> (OO ()
s——{000-

most—O O OO | |
famous—VOOQ-"Q |
song——0 00O O]

Zyzzyva

aardvark

L

OO O

@ ?  Beatles

encoder decoder
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