# Statistical Natural Language Processing [COMP0087] 

## Manual feature engineering <br> Linear models and classification

Vasileios Lampos

Computer Science, UCL

## About me

- Associate Professor at CS

- Website: lampos.net
- Research in ML / NLP methods for health
- Publications: scholar.google.com/citations?user=eXDONDEAAAAJ
- Tweets @ twitter.com/lampos
- 1.09D @ 90 High Holborn (UCL Centre for AI) / Meeting by appointment


## About this lecture

- In this lecture:
- Manual feature engineering for NLP applications
- Introductory insights about supervised learning (classification)
- A few introductory remarks about word representation in NLP
- Reading: Chapters 2 and 5 of "Speech and Language Processing" (SLP) by Jurafsky and Martin (2023) - web.stanford.edu/~jurafsky/slp3/
- Acknowledgements: Based on prior material from Pontus Stenetorp


## Sentiment analysis as our NLP task paradigm

- A popular task / downstream NLP application
* "A Clockwork Orange" is a cinematic masterpiece.
* No, I don't think this was Emma Stone's best performance, but overall it was still a decent one!
* Maybe I am too old, but I find any reference to "AI Music" quite irritating and aesthetically displeasing.





## Data representation matters

- Machine learning methods become simpler when data representations are good
- But what is a "good" data representation?
- Accurate / correct (trivial if we take measurements, not trivial when we abstract)
- Good choice for a specific modelling task
- Then again, if it was always possible to obtain or have great data representations, advanced machine learning methods would not have been necessary

- More on some fundamental aspects of data representation in NLP later in this lecture!


## Tokenisation

- A machine sees a string as a sequence of characters - no sense of "words" In my rearview mirror, the sun is going down.

Of course, mama's gonna help build the wall!

- Break up string into tokens ( $=$ words)
- Easy for well-structured English (white space plus a few other rules)
- Not easy for some languages (e.g. Chinese, Japanese)
- Not necessarily easy for unstructured (e.g. social media) or domain-specific (e.g. scientific) text


## Tokenisation of English - More challenging examples

## @RandomTwitterUser: Its another day of the week.also my bday! Feel xhausted !@Helen0001781, are U there? \#goodMorningEveryone

The first example was the initial preparation of $a, \omega$-diazido-terminated polystyrene-b-poly(ethylene oxide)-b-polystyrene followed by coupling with dipropargyl ether in dimethylformamide (DMF) in the presence of a $\mathrm{CuBr} / \mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, N^{\prime \prime}, N^{\prime \prime}$-pentamethyldiethylenetriamine catalyst.

From: K. Matyjaszewski, Adv. Mater. 2018, 30, 1706441.



## "Bag of words" representation



## "Bag of words" representation



## Sum

Pooling


Sum pooling is sensitive to sentence length

## Mean Pooling



Mean pooling corrects the sentence length sensitivity of sum pooling


Max pooling maintains a binary representation

## More engineering - Using bi-grams



Uni-gram (1-gram) features may not be enough. Engineer more features! bi-grams (2-grams) may capture more cohesive language patterns.

1. Use dictionaries?
2. Use syntax?
3. Preprocessing?



## Linear classification - Obtaining a classification score

For simplicity, let's now use $\mathbf{x} \in \mathbb{R}^{m}$ to represent $f(x)$



We are "learning" a decision boundary that separates positives from negative examples.

If the range of scores is bounded, e.g. from [-1 to 1], we may think a good boundary choice is 0 . No learning! However, on most occasions this is a sub-optimal decision.

Assign pseudo-probabilities to classes

$$
\begin{aligned}
& p_{\mathbf{z}}(y=+\mid \mathbf{x})=\sigma\left(s_{\mathbf{z}}(\mathbf{x})\right)=\frac{1}{1+e^{-s_{\mathbf{z}}(\mathbf{x})}} \\
& p_{\mathbf{z}}(y=-\mid \mathbf{x})=1-p_{\mathbf{z}}(y=+\mid \mathbf{x})
\end{aligned}
$$

Choose the label with the highest probability / score

Trivial for binary classification (2 classes):

1. Calculate $p_{\mathbf{Z}}(+\mid \mathbf{x})$
2. Calculate $p_{\mathbf{z}}(-\mid \mathbf{x})$
3. Choose highest one!

Formally: $\quad y^{*}=\underset{\hat{y}}{\operatorname{argmax}} p_{\mathbf{z}}(\hat{y} \in\{-,+\} \mid \mathbf{x})$
Less trivial when dealing with thousands of classes
(machine translation, language models)



## Training loss

observations (input) labels (output)
Data set

$$
\mathscr{D}=\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)\right\}
$$

Loss function

$$
\begin{aligned}
& L(\mathscr{D}, \mathbf{z})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(\mathbf{x}_{i}, y_{i}, \mathbf{z}\right) \\
& \text { per instance loss } \\
& \begin{array}{c}
\text { conditional } \\
\text { log-likelihood }
\end{array} \\
& \ell(\mathbf{x}, y, \mathbf{z})=-\log p_{\mathbf{z}}(y \mid \mathbf{x})
\end{aligned}
$$

## Cross-entropy loss (logistic regression)


to simplify the notation (see previous slide)

$$
\sigma\left(s_{\mathbf{z}}\left(\mathbf{x}_{i}\right)\right) \rightarrow \sigma_{\mathbf{x}_{i}}
$$

Detailed explanation in Chapter 5 of SLP Hint: $y$ can be seen as a Bernoulli distribution

## Cross-entropy loss

$$
=-\frac{1}{n} \sum_{i=1}^{n}\left[y_{i} \log \sigma_{\mathbf{x}_{i}}+\left(1-y_{i}\right) \log \left(1-\sigma_{\mathbf{x}_{i}}\right)\right]
$$

## Intuition for the cross-entropy loss (logistic regression)

When $\quad y_{i}=1$ (or the + class)
the instance loss $\quad \ell_{\mathrm{ce}}=-\log \sigma_{\mathrm{x}_{i}}$


## Training (optimisation)



## Training - Gradient descent

## Gradient descent

$z_{0}=$ random;
$i=0$;
repeat until convergence:

$$
\begin{aligned}
& z_{i+1}=z_{i}-\alpha\left(\nabla_{z} L\left(\mathscr{D}, z_{i}\right) ;\right. \\
& i=i+1 ;
\end{aligned}
$$

learning rate

$z$

$$
\nabla_{\mathbf{w}} L(\mathscr{D}, \mathbf{z})=\nabla_{\mathbf{w}} \frac{1}{n}\left[\ell\left(\mathbf{x}_{1}, y_{1}, \mathbf{z}\right)+\ldots+\ell\left(\mathbf{x}_{n}, y_{n}, \mathbf{z}\right)\right]
$$

Models with many parameters and large training sets $\rightarrow$ gradient descend updates one parameter at a time using stale values (for the rest), needs to iterate across all training samples, long time without update

Counter-measure: Approximate gradients via sampling a single training instance (or in practice a small subset known as a batch)

$$
\begin{gathered}
\nabla_{\mathbf{w}} L(\mathscr{D}, \mathbf{z}) \approx \nabla_{w} \ell\left(\mathbf{x}_{j}, y_{j}, \mathbf{z}\right) \\
z_{i+1}=z_{i}-\alpha \nabla_{\mathbf{z}} \ell\left(\mathbf{x}_{j}, y_{j}, z_{i}\right)
\end{gathered}
$$

## Regularisation

| $\mathbf{Z}_{1}^{*}$ | $\mathbf{Z}_{2}^{*}$ |
| :---: | :---: |
| $\left[\begin{array}{c}1 \\ -1 \\ 0.5 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right]$ |  |\(\left[\begin{array}{c}0 <br>

-1 <br>
0 <br>
\vdots <br>
1 <br>
1 <br>
1 <br>
1 <br>
1 <br>
\vdots <br>
good <br>
like <br>
1 <br>

1\end{array}\right]\)| good band |
| :--- |
| good music |
| good lyrics |
| $\vdots$ |
| this is a great band |
| this was a great band |

> Which one of the two solutions might be better?

## L2-norm regularisation

$$
L_{\lambda}(\mathscr{D}, \mathbf{z})=L(\mathscr{D}, \mathbf{z})+\lambda\|\mathbf{z}\|_{2}^{2}
$$

$$
\begin{array}{rll}
L\left(\mathscr{D}, \mathbf{z}^{*}\right): & 0.02 & 0.02 \\
\left\|\mathbf{z}^{*}\right\|_{2}^{2}: & 4.09 & 48.7
\end{array}
$$

## L2-norm vs L1-norm regularisation



## L2-norm regularisation

$$
L_{\lambda}(\mathscr{D}, \mathbf{z})=L(\mathscr{D}, \mathbf{z})+\lambda\|\mathbf{z}\|_{2}^{2}
$$

## L1-norm regularisation

$L_{\lambda}(\mathscr{D}, \mathbf{z})=L(\mathscr{D}, \mathbf{z})+\lambda\|\mathbf{z}\|_{1}$

L2 easier to optimise
L1 non-continuous derivative at 0
L1 sparse, L2 weights are never 0 Desirable property?

## Word (token) representation in NLP

figshare.com/articles/dataset/UK_Twitter_word_embeddings/4052331

based on tweets
$\sim 10$ years old!

## NB: <br> Uncensored!

## Go to

lampos.net/img/fig-word-cloud.pdf
to zoom in

## Why is word representation important?

- In a machine learning task (if not $100 \%$, then $99 \%$ of current NLP tasks), feature representation is key sometimes, it is more important than the machine learning method itself!
- Hence, better feature representation = better performance
- The main driving force for (large) language models


## Words / tokens: $w$

Vocabulary: $\mathscr{V}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
Learn / find representation function

$$
f\left(w_{i}\right)=r_{i}, i=\{1, \ldots, n\}
$$

## Essential properties of a good word representation

A good word representation makes sure that:

- representations for different words are distinct
- similar words (what is the definition of similar here?) should have similar representations

Map words to unique positive non-zero integers

$$
f(w) \in \mathbb{N}^{n}
$$

$$
f_{j}\left(w_{i}\right)=\left\{\begin{array}{ll}
1, & \text { if } i=j \\
0, & \text { elsewhere }
\end{array} \quad\right. \text { one-hot vector }
$$

For example:

$$
f\left(w_{4}\right)=\underbrace{\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & \ldots & 0
\end{array}\right]}_{n \text { elements }}
$$

$$
\mathscr{V}=\{\text { apple }, \text { orange }, \text { rabbit }\}
$$

$$
\begin{aligned}
& f(\text { apple })=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
& f(\text { orange })=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \\
& f(\text { rabbit })=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$



$$
\operatorname{cosine}-\operatorname{sim}(\mathbf{w}, \mathbf{v})=\frac{\sum_{i=1}^{n} w_{i} \cdot v_{i}}{\sqrt{\sum_{i=1}^{n} w_{i}^{2}} \cdot \sqrt{\sum_{i=1}^{n} v_{i}^{2}}}=\frac{\mathbf{w}^{\top} \mathbf{v}}{\|\mathbf{w}\|_{2}\|\mathbf{v}\|_{2}}=\cos \phi
$$

where $\phi$ is the angle between $\mathbf{w}$ and $\mathbf{v}$ in a vector space
ranges from $[-1,1]$, but for non-negative representations from $[0,1]$

$$
\begin{aligned}
& \text { cosine-sim }=1 \rightarrow \text { identical }\left(\phi=0^{\circ}\right) \\
& \text { cosine-sim }=-1 \rightarrow \text { opposites }\left(\phi=180^{\circ}\right) \\
& \text { cosine-sim }=0 \rightarrow \text { orthogonal }\left(\phi=90^{\circ}\right)
\end{aligned}
$$



Vocabulary ( $\mathscr{V}$ ) words / tokens are represented as matrix rows

$$
d \text { dimensionality of the continuous representation }
$$

The representation of a word $w, f(w)$, is now a row of $\mathbf{W}$ :

$$
f(w)=\mathbf{W}_{i,:} \text { or simply } \mathbf{w}_{i} \in \mathbb{R}^{d}
$$

## Dense continuous word representations example

$\mathscr{V}=\{$ apple, orange, rabbit $\}$
Assuming $d=2, \mathbf{W} \in \mathbb{R}^{3 \times 2}$
$f($ apple $)=\left[\begin{array}{ll}1.0 & 1.0\end{array}\right]$
$f($ orange $)=\left[\begin{array}{ll}0.9 & 1.0\end{array}\right]$
$f($ rabbit $)=\left[\begin{array}{ll}0.1 & 0.5\end{array}\right]$


```
f(\mathrm{ apple })=[\begin{array}{ll}{1.0}&{1.0}\end{array}]
f(orange) =[\begin{array}{ll}{0.9}&{1.0}\end{array}]
f(rabbit)}=[\begin{array}{ll}{0.1}&{0.5}\end{array}
```



# "You shall know a word $\bigcirc$ the company it keeps" John Rupert (J. R.) Firth (1957) 

## Word co-occurrences

"... comparing an apple to an orange..."
"... an apple from Italy and an orange from Spain..."
"... my rabbit does not like orange juice..."

## Record the number of times words co-occur

 in a collection of documents (corpus)

$$
\begin{aligned}
& \mathbf{C} \in \mathbb{N}^{|\mathscr{Y}| x|\mathscr{Y}|} \quad \text { e.g. } \mathbf{C}=\left[\begin{array}{ccc}
\frac{0^{2}}{2} & 2 & 0 \\
2 & 3 & 1 \\
0 & 1 & 1
\end{array}\right]_{\text {apple }}^{\text {apange }} \\
& \operatorname{cosine}-\operatorname{sim}(f(\text { apple }), f \text { (orange) }) \approx 0.995 \\
& \operatorname{cosine}-\operatorname{sim}(f(\text { apple }), f(\text { rabbit }))=0.5 \\
& \operatorname{cosine}-\operatorname{sim}(f(\text { orange }), f(\text { rabbit })) \approx 0.756
\end{aligned}
$$



$\mathbf{U} \in \mathbb{R}^{|\mathscr{Y}| \times d}$
$\mathbf{V} \in \mathbb{R}^{d \times|\mathscr{Y}|}$

## Dense continuous representations via matrix factorisation (SVD)


$\mathbf{C} \in \mathbb{N}^{|\mathscr{Y}| \times|\mathscr{Y}|}$
$\mathbf{U} \in \mathbb{R}^{|\mathcal{Y}| \times d}$
$\mathbf{V} \in \mathbb{R}^{d \times|\mathscr{Y}|}$

$$
\begin{aligned}
& \text { Let's assume that } \mathbf{U}=\left[\begin{array}{cc}
-1.26 & 0.65 \\
-1.72 & -0.24 \\
-0.46 & -0.89
\end{array}\right] \begin{array}{l}
\text { apple } \\
\text { orabge } \\
\text { rabit }
\end{array} \\
& \quad \begin{array}{l}
\text { cosine-sim }(f \text { (apple) }) f(\text { orange })) \approx 0.817 \\
\quad \operatorname{cosine}-\operatorname{sim}(f(\text { apple }), f(\text { rabbit })) \approx 0.001 \\
\quad \operatorname{cosine}-\operatorname{sim}(f \text { (orange }), f(\text { rabbit })) \approx 0.578
\end{array}
\end{aligned}
$$

"I had ____ with milk for breakfast today."

- Good: cereals
- Acceptable (?): pizza
- Bad: songs
"Pink Floyd have become $\qquad$ numb."
- Good: comfortably
- Acceptable (?): very
- Bad: dysfunctional

figshare.com/articles/dataset/
UK_Twitter_word_embeddings/4052331

Go to
lampos.net/img/fig-word-cloud.pdf
to zoom in

# $\operatorname{cosine}-\operatorname{sim}(f$ (apple), $f$ (orange) $) \approx 0.300$ $\operatorname{cosine}-\operatorname{sim}(f($ apple $), f($ rabbit $)) \approx 0.094$ $\operatorname{cosine}-\operatorname{sim}(f($ orange $), f($ rabbit $)) \approx 0.091$ 

