Information Retrieval & Data Mining [COMP0084]

Introduction to machine learning

Vasileios Lampos Computer Science, UCL

2

— Introduction to machine learning; supervised learning (regression, classification),

— Chapters 2, 4 of "*Web Data Mining*" by Bing Liu (2006) — [cs.uic.edu/~liub/WebMiningBook.html](https://www.cs.uic.edu/~liub/WebMiningBook.html) — Chapters 3, 4, 14 of "*The Elements of Statistical Learning*" by Hastie, Tibshirani, and

- In this lecture:
	- Data mining; association rule mining (apriori algorithm)
	- unsupervised learning (clustering) with examples
- ‣ Useful additional reads:
	-
	- Friedman (2008) — hastie.su.domains/ElemStatLearn/
	- Chapter 5 of "*Speech and language processing*" (SLP) by Jurafsky and Martin (2021) web.stanford.edu/~jurafsky/slp3/
	- search activity by Lampos, Miller et al. — [nature.com/articles/srep12760](https://www.nature.com/articles/srep12760)
-

— More advanced reading: Paper on estimating influenza prevalence based on Web

‣ Some slides were adapted from Bing Liu's course — [cs.uic.edu/~liub/teach/cs583-fall-21/cs583.html](https://www.cs.uic.edu/~liub/teach/cs583-fall-21/cs583.html)

‣ **Data mining** is the process of discovering (*mining*) useful patterns from or conducting

‣ **Multi-disciplinary**: machine learning (or AI more broadly), statistics, databases, information retrieval — *but the distinction between machine learning and data mining is becoming*

- inferences based on various types of *data* sources such as structured information repositories (e.g. databases), text, images, sound, video, and so on.
- *increasingly difficult, especially from an applications perspective.*
-
-
- *involving large amounts of data*

‣ Strong research community: Knowledge Discovery and Data Mining or **KDD** — kdd.org

• Why? Gaining knowledge from a database is not as simple as conducting database queries

‣ Applications include marketing, recommendations, scientific data analysis, and *any task*

‣ Today: a quick look into **Association rule mining** / **learning** — *perhaps the most important*

• Introduced by Agrawal, Imielinski, and Swami in 1993 — dl.acm.org/doi/pdf/10.1145/170035.170072

 $$

- *task proposed and studied by the data mining community*
-
- ‣ Applicable on categorical / discrete data (e.g. product categories, movies, songs)
- ‣ Just a good, old algorithm! No machine learning involved here…
- Initially used for market basket analysis to understand how products purchased by customers are related, e.g.

{cashews, oranges, pistachios} *t n* :

 $COMPOO84$ - Intro to ML 5

…

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios} t_2 : {almonds, bananas}

A set of all the *m* items, $I = \{i_1, i_2, ..., i_m\}$ — e.g. "almonds" is an item

t₁: {almonds, cashews, pistachios} t_2 : {almonds, bananas} {cashews, oranges, pistachios} *t n* : …

COMP0084 - Intro to ML

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios} t_2 : {almonds, bananas} …

- A set of all the *m* items, $I = \{i_1, i_2, ..., i_m\}$ — e.g. "almonds" is an item
- A set of all the *n* **transactions**, $T = \{t_1, t_2, ..., t_n\}$

COMP0084 - Intro to ML

{cashews, oranges, pistachios} *t n* :

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios} t_2 : {almonds, bananas} {cashews, oranges, pistachios} *t n* : …

- A set of all the *m* items, $I = \{i_1, i_2, ..., i_m\}$ — e.g. "almonds" is an item
- A set of all the *n* **transactions**, $T = \{t_1, t_2, ..., t_n\}$
- A transaction t_i is a set of items, and hence $t_i \subseteq I$

COMP0084 - Intro to ML

Association rule mining $-$ Notation & definitions

market basket transactions

{cashews, oranges, pistachios} *t n* :

 $COMPO084$ - Intro to ML 6

…

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios} t_2 : {almonds, bananas}

‣ An **itemset** is a set of items $-$ e.g. $X = \{$ almonds, cashews $\}$

COMP0084 - Intro to ML

{cashews, oranges, pistachios} *t n* :

…

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios}

 t_2 : {almonds, bananas}

- ‣ An **itemset** is a set of items $-$ e.g. $X = \{$ almonds, cashews $\}$
- A k -itemset is an itemset with k items $-$ e.g. $X = \{$ almonds, cashews, pistachios $\}$ is a 3-itemset

COMP0084 - Intro to ML

{cashews, oranges, pistachios} *t n* :

…

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios}

 t_2 : {almonds, bananas}

‣ An **itemset** is a set of items $-$ e.g. $X = \{$ almonds, cashews $\}$

i

COMP0084 - Intro to ML

{cashews, oranges, pistachios} *t n* :

…

- A k -itemset is an itemset with k items $-$ e.g. $X = \{$ almonds, cashews, pistachios $\}$ is a 3-itemset
- ▶ A transaction t_i contains **itemset** X if $X \subseteq t$

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios}

 t_2 : {almonds, bananas}

- ‣ An **itemset** is a set of items $-$ e.g. $X = \{$ almonds, cashews $\}$
- A k -itemset is an itemset with k items $-$ e.g. $X = \{$ almonds, cashews, pistachios $\}$ is a 3-itemset
- ▶ A transaction t_i contains **itemset** X if $X \subseteq t$
- An association rule between itemsets X , Y is an implication of the form:

i

 $X \rightarrow Y$, where $X, Y \subset I$, and $X \cap Y = \emptyset$

COMP0084 - Intro to ML

{cashews, oranges, pistachios} *t n* :

…

Association rule mining $-$ Notation & definitions

market basket transactions

t₁: {almonds, cashews, pistachios} t_2 : {almonds, bananas}

-
-
- \blacktriangleright **Association rule:** $X \to Y$
	- $-$ a pattern present in our data that we want to "mine" \Longrightarrow data mining
	- X occurs, Y occurs with a certain support and confidence

$$
\rightarrow \text{support} = \frac{(X \cup Y) \text{. count}}{n}
$$

- $-$ *n* transactions
-
-

$-$ support $= \Pr(X \cup Y)$ $=$ probability that a transaction contains both itemsets X and Y $-$ how many times X and Y appear together in all (n) transactions in T divided by n

- Association rule: $X \to Y$
	- X occurs, Y occurs with a certain support and confidence
- ‣ **support** = (*X* ∪ *Y*) . count *n* $= Pr(X \cup Y)$
- ‣ **confidence** = (*X* ∪ *Y*) . count *X* . count
	- also contain *Y*
	- transactions that contain *X*

Association rule mining $-$ Support & confidence

$-$ confidence $= \Pr(Y|X) =$ conditional probability that a transaction that contains X will

 $-$ how many times a transaction that contains X also contains Y divided by the number of

- Association rule mining goal: Find all association rules $(X \to Y)$ that satisfy a pre-
creatified (large) minimum arms at (also abbunding descriptions) and minimum specified (*by us!*) **minimum support** (also abbreviated as **minsup**) and **minimum confidence** (**minconf**)
- \triangleright Key properties for this data mining task
	- **Completeness**, i.e. we need to identify all possible rules Note that $X \to Y$ and $Y \to X$ are different rules. Why?
	- *memory*)

— Mining with data on hard disk (*because it is not always feasible to load everything in*

Association rule mining - An example

- t₁: {almonds, cashews, pistachios}
- t_2 : {almonds, bananas}
- t₃: {apples, bananas}
- t_4 : {almonds, bananas, cashews}
- t₅: {almonds, bananas, cashews, oranges, pistachios}
- t₆: {cashews, oranges, pistachios}
- t₇: {cashews, oranges, pistachios}

‣ Toy database with 7 supermarket transactions

Association rule mining — An example

-
- t₁: {almonds, cashews, pistachios}
- t_2 : {almonds, bananas}
- t₃: {apples, bananas}
- t_4 : {almonds, bananas, cashews}
- t₅: {almonds, bananas, cashews, oranges, pistachios}
- t₆: {cashews, oranges, pistachios}
- t₇: {cashews, oranges, pistachios}

-
- ‣ Toy database with 7 supermarket transactions ‣ Let's set our association rule mining goals: $-$ minsup = 30% and minconf = 80% t₁: {almonds, cashews, pistachios} t_2 : {almonds, bananas} t₃: {apples, bananas} t_4 : {almonds, bananas, cashews} t₅: {almonds, bananas, cashews, oranges, pistachios}

Association rule mining $-$ An example

- t₆: {cashews, oranges, pistachios}
- t₇: {cashews, oranges, pistachios}

- ‣ Toy database with 7 supermarket transactions
- ‣ Let's set our association rule mining goals: $-$ minsup = 30% and minconf = 80%
- ► **Frequent itemset** examples:
– {almonds, cashews} $-\{\text{cashews, pistachios}\}\$ with support $4/7$ $-$ {cashews, oranges, pistachios} with support $3/7$

Association rule mining — An example

- t₁: {almonds, cashews, pistachios}
- t_2 : {almonds, bananas}
- t₃: {apples, bananas}
- t_4 : {almonds, bananas, cashews}
- t₅: {almonds, bananas, cashews, oranges, pistachios}
- t₆: {cashews, oranges, pistachios}
- t₇: {cashews, oranges, pistachios}

with support $3/7$ ($>$ minsup)

- ‣ Toy database with 7 supermarket transactions
- ‣ Let's set our association rule mining goals: $minsup$ = 30% and $minconf$ = 80%
- ▶ Frequent itemset examples:
→ {almonds, cashews} with support $3/7$ ($>$ minsup) $-\{\text{cashews, pistachios}\}\$ with support $4/7$ $-$ {cashews, oranges, pistachios} with support $3/7$ t₇: {cashews, oranges, pistachios}
- ‣ **Association rule candidates** from the above frequent itemsets
	- has a confidence of 3/4 (< minconf, *rejected*) $-$ almonds \rightarrow cashews
	- has a confidence of 4/4 (> minconf, *accepted*) $-$ pistachios \rightarrow cashews
	- $−$ {cashews, oranges} $→$ pistachios has a confidence of 3/3 (> minconf, *accepted*)

Association rule mining — An example

11

- Large number of different association rule mining algorithms deploying different strategies to solve this task
- \triangleright Algorithms can differ in their computational efficiency, data structures that are required, memory requirements
- ‣ But their **output can only be the same**:
	- $-$ Given a transaction data set T , \mathtt{minsup} , and $\mathtt{minconf}$, the set of association rules in T is uniquely determined.
- ‣ Foundational algorithm for association rule mining: **Apriori**

- ‣ **Apriori** is perhaps the most popular algorithm in data mining
- ▶ "Apriori" \Longrightarrow because it uses "prior" knowledge of frequent itemsets
- Proposed by Agrawal and Srikant in 1994 [vldb.org/conf/1994/P487.pdf](http://www.vldb.org/conf/1994/P487.PDF) (> 30,000 citations)
- ‣ Apriori is a 2-step algorithm:
	- first, find all the itemsets with a minimum support (a.k.a. *frequent itemsets*) in a database of transactions
	- then, use the identified frequent itemsets to generate association rules

Apriori – Identify frequent itemsets

- ‣ The key idea of Apriori is the **downward closure property** or commonly also referred to as the "**Apriori property**":
	-
	- $-$ Any subset of a frequent itemset is also a frequent itemset Any subset of an itemset whose support is ≥ **minsup** has also support ≥ **minsup** =

- ‣ The key idea of Apriori is the **downward closure property** or commonly also referred to as the "**Apriori property**":
	-
	- $-$ Any subset of a frequent itemset is also a frequent itemset Any subset of an itemset whose support is ≥ **minsup** has also support ≥ **minsup** =
- ► If the itemset {a, b, c, d} with 4 items is frequent, then its $(2^4 2) = 14$ non-empty sub-itemsets (*subsets*) will also be frequent. Just for clarity, these are: {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, and {b, c, d}

- ‣ The key idea of Apriori is the **downward closure property** or commonly also referred to as the "**Apriori property**":
	-
	- $-$ Any subset of a frequent itemset is also a frequent itemset Any subset of an itemset whose support is ≥ **minsup** has also support ≥ **minsup** =
- ► If the itemset {a, b, c, d} with 4 items is frequent, then its $(2^4 2) = 14$ non-empty sub-itemsets (*subsets*) will also be frequent. Just for clarity, these are: {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, and {b, c, d}
- ‣ **Contraposition:** Reversing the above property, if an itemset is **not frequent**, then any of its **supersets cannot be frequent** since they will be containing something that is not frequent

- \rightarrow Apriori is an iterative algorithm
	- given a minimum support
	- find all frequent 1-itemsets (denoted by $F[1]$ in the source code^{**})
	- use those to find all frequent 2-itemsets, and so on $>$ C[2] is a list of frequent 2-itemset candidates based on F[1] $>$ F[2] \subseteq C[2] is a list with the frequent 2-itemsets
	- that contain some frequent $(k-1)$ -itemset

 $-$ key algorithmic principle: in each iteration k of the algorithm only consider itemsets

- \triangleright Items should always be sorted according to a sorting scheme — i.e. lexicographic order
- \triangleright This order will be used throughout the algorithm as it helps to reduce redundant passes and comparisons on the data
- \triangleright For example, the frequent itemset $\{a, b, c, d\}$ is identical to the frequent itemsets {c, d, a, b} or {b, a, d, c} — we only need to deal with {a, b, c, d} once!

-
-
-
-
-
-

01 % T: all the transactions, MINSUP: frequent itemset minimum support 02 **function apriori**(T, MINSUP): 03 % C[1] count of 1-itemsets, n transactions in T 04 C[1], n ← **initial-pass**(T) 05 % F[1] is the set of frequent 1-itemsets 06 F[1] ← {f | f in C[1] **AND** f.count/n \geq MINSUP} 07 **for** $k = 2$; $F[k-1] \neq \emptyset$; $k++$: 08 % use the (k-1)—itemsets to generate k-itemset candidates, C[k] 09 C[k] ← **generate-candidates**(F[k-1]) 10 **for** each transaction t in T**:** 11 **for** each candidate c in C[k]**:** 12 **if** c is in t**:** 13 c.count++ 14 F[k] ← {c in C[k] | c.count/n ≥ MINSUP} 15 16 **return** F

Apriori — Pseudocode of the algorithm (*part 1*)

main function

- JP: frequent itemset minimum support
- transactions in T
- 1-itemsets $\text{unit}/\text{n} \geq \text{MINSUP}$
- generate k-itemset candidates, C[k] subroutine
-
- $'n \geq$ <code>MINSUP</code> }

17

- denoted by $C[K]$
- ‣ It implements the following two operations:
	- itemsets, $F[K-1]$
	- should be removed

► The generate-candidates function takes the $(k-1)$ -frequent itemsets, denoted by $F[k-1]$ in the source code, and returns a superset of k -frequent itemset candidates,

 $-$ **Join**: generate all possible candidate k -itemsets, <code>C[k],</code> based on the $(k-1)$ -frequent

— **Prune**: remove those candidates in C[k] that cannot be frequent, i.e. if a candidate itemset has a subset of items that is not already identified as a frequent itemset it

-
-
- -
	-

-
-

01 % using frequent (k-1)-itemsets generate frequent k-itemset candidates **function generate-candidates**(F[k-1]): $C[k] \leftarrow \emptyset$ **for** every f1, f2 in F[k-1] **where:** 05 a = f1 - f2 **AND** % set difference 06 b = f2 - f1 **AND** % set difference 07 (a **AND** b) are both of size 1 **AND** % f1 and f2 differ by 1 element 08 a < b **do:** % lexicographic comparison c ← $\{f1,b\}$ & frequent k-itemset candidate C[k] ← $\{C[k], c\}$ & add c to candidate itemsets **for** each (k-1)-subset s of c **do: if** s not in F[k-1]**: delete** c from C[k] % pruning non-frequent candidates **return** C[k] % return candidate itemsets

Apriori — An example

- t[1]: {almonds, cashews, pistachios}
- t[2]: {almonds, bananas}
- t[3]: {apples, bananas}
- t[4]: {almonds, bananas, cashews}
-
- t[6]: {cashews, oranges, pistachios}
- t[7]: {cashews, oranges, pistachios}

-
- t[5]: {almonds, bananas, cashews, oranges, pistachios}
	-
	-

Let's use Apriori to identify all frequent itemsets with minimum support of 30%

Apriori — An example

```
, pistachios}
```

```
, cashews}
```

```
, cashews, oranges, pistachios}
```
- , pistachios}
- , pistachios}

COMP0084 - Intro to ML

C[1]:{almonds:4/7, apples:1/7, bananas:4/7, cashews:5/7, oranges:3/7, pistachios:4/7}

F[1]:{almonds, bananas, cashews, oranges, pistachios}

C[2]:{ {almonds, bananas}:3/7, {almonds, cashews}:3/7, {almonds, oranges}:1/7, {almonds, pistachios}:2/7, {bananas, cashews}:2/7, {bananas, oranges}:1/7, {bananas, pistachios}:1/7, {cashews, oranges}:3/7, {cashews, pistachios}:4/7, {oranges, pistachios}:3/7 }

Apriori — An example

```
, pistachios}
, cashews}
, cashews, oranges, pistachios}
, pistachios}
, pistachios}
```

```
almonds, cashews}:3/7,
almonds, pistachios}:2/7,
bananas, oranges}:1/7,
cashews, oranges}:3/7,
oranges, pistachios}:3/7 }
```
21

COMP0084 - Intro to ML

F[2]:{ {almonds, bananas}, {almonds, cashews}, {cashews, oranges}, {cashews, pistachios}, {oranges, pistachios} }
```
pistachios}
```

```
, cashews}
```

```
cashews, oranges, pistachios}
```

```
pistachios}
```

```
pistachios}
```


F[2]:{ {almonds, bananas}, {almonds, cashews}, {cashews, oranges}, {cashews, pistachios}, {oranges, pistachios} }

C[3]:{ {almonds, bananas, cashews}:2/7, {cashews, oranges, pistachios}:3/7 }

```
, pistachios}
```

```
, \cosh \exp \left\{ \right.
```

```
, cashews, oranges, pistachios}
```

```
, pistachios}
```

```
, pistachios}
```


F[2]:{ {almonds, bananas}, {almonds, cashews}, {cashews, oranges}, {cashews, pistachios}, {oranges, pistachios} }

C[3]:{ {almonds, bananas, cashews}:2/7, {cashews, oranges, pistachios}:3/7 }

```
*** Incorrect ***
```

```
, pistachios}
```

```
, cashews}
```

```
, cashews, oranges, pistachios}
```

```
, pistachios}
```

```
, pistachios}
```


COMP0084 - Intro to ML

F[2]:{ {almonds, bananas}, {almonds, cashews}, {cashews, oranges}, {cashews, pistachios}, {oranges, pistachios} }

C[3]:{ {almonds, bananas, cashews}:2/7, {cashews, oranges, pistachios}:3/7 }

C[3]:{ {cashews, oranges, pistachios}:3/7 } entry {almonds, bananas, cashews} will be pruned because {bananas, cashews} is not in F[2]

F[3]:{ {cashews, oranges, pistachios} }

```
*** Incorrect ***
```

```
pistachios}
\texttt{cashews}cashews, oranges, pistachios}
pistachios}
pistachios}
```


COMP0084 - Intro to ML

Apriori identified the following *frequent* itemsets with a minimum support of 30%:

 $F[1]:\{almonds:4/7, bananas:4/7, cashews:5/7, orang:3/7, pistachios:4/7\}$

 F[2]:{ {almonds, bananas}:3/7, {almonds, cashews}:3/7, {cashews, oranges}:3/7, {cashews, pistachios}:4/7, {oranges, pistachios}:3/7 }

F[3]:{ {cashews, oranges, pistachios}:3/7 }

- \triangleright Frequent itemsets do not directly provide association rules
- ‣ For each frequent itemset *F* For each non-empty subset A of F (no repetitions)

- $A \rightarrow B$ is an association rule if $\mathsf{confidence}\,(A \rightarrow B) \geq \mathtt{minconf}$ $support (A \rightarrow B) = support (A \cup B) = support (F)$
	- confidence $(A \rightarrow B)$ = support (*A* ∪ *B*) support (*A*)

$$
- B = F - A
$$

Apriori – Generating association rules (*example*)

COMP0084 - Intro to ML

minsup = 30%, **minconf** = 80%, let's use F[3]:{ {cashews, oranges, pistachios}:3/7 }

A = {{cashews, oranges}, {cashews, pistachios}, {oranges, pistachios}, {cashews}, {oranges}, {pistachios}}

 $A \rightarrow B$ {cashews, oranges} \rightarrow pistachios confidence = 1 ${cases, \; \text{pixels,} \; \text{pixels}} \rightarrow \text{orange}$ { σ oranges, pistachios} \rightarrow cashews confidence = 1 cashews \rightarrow {oranges, pistachios} confidence = 0.6 oranges \rightarrow {cashews, pistachios} confidence = 1 $p{\text{ist}alics} \rightarrow \{ \text{cashews}, \text{ oranges} \}$ confidence = 0.75

```
, pistachios}
```

```
, cashews}
```

```
, cashews, oranges, pistachios}
```

```
, pistachios}
```

```
, pistachios}
```


Apriori – Generating association rules (*example*)

COMP0084 - Intro to ML

minsup = 30%, **minconf** = 80%, let's use F[3]:{ {cashews, oranges, pistachios}:3/7 }

A = {{cashews, oranges}, {cashews, pistachios}, {oranges, pistachios}, {cashews}, {oranges}, {pistachios}}

 $A \rightarrow B$ ${cases}$, $orange s$ \rightarrow $pistachios$ confidence = 1 ${cases, \; pistachios} \rightarrow oranges$ $\rightarrow oranges$ confidence = 0.75 ${coranges}$, pistachios} \rightarrow cashews confidence = 1 cases \rightarrow {oranges, pistachios} confidence = 0.6 oranges → {cashews, pistachios} confidence = 1 $p{\text{ist}a}$ chios \rightarrow {cashews, oranges} confidence = 0.75

```
, pistachios}
```

```
, cashews}
```

```
, cashews, oranges, pistachios}
```

```
, pistachios}
```

```
, pistachios}
```


- ► To obtain an association rule $A \to B$, we need to compute the quantities: support $(A \cup B)$ and support (*A*)
- This information has already been recorded during itemset generation. Therefore, there is no need to access the raw transaction data any longer.
- Not as time consuming a frequent itemset generation, although there are efficient algorithms to generate association rules as well

The (*very*) basics of machine learning — supervised learning (*regression*, *classification*) — unsupervised learning (*clustering*)

- ‣ Arthur Samuel (IBM, 1959): "*Machine learning is the field of study that gives the computer the ability to learn* (**a task**) *without being explicitly programmed.*"
	- credited for coining the term
	- although we are still explicitly programming them to learn!
- Tom Mitchell (CMU, 1998): "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P , if its performance at tasks in T , as measured by P , improves with experience E ." — more formal definition — learning from experience (*observations*, *data*)

COMP0084 - Intro to ML 30

x ∈ℝ denotes a real-valued scalar $\mathbf{x} \in \mathbb{R}^n$ denotes a real-value vector with *n* elements $X \in \mathbb{R}^{n \times m}$ denotes a real-valued matrix with *n* rows and *m* columns **y** ∈ℝ*^m* denotes *m* inferences of a real valued response variable $\ddot{}$ $\|\mathbf{x}\|_k =$ *n* ∑ *i*=1 $|x_i|$ *k* $\overline{}$ 1 *k*

-
-
- **y** ∈ℝ*^m* denotes *m* instances of a real valued response (or target) variable
	-

denotes the L_k -norm $\in \mathbb{R}$ of \mathbf{x}

- ‣ Experience is something tangible, i.e. an observation and eventually a data point, something that can take a numeric form
- \blacktriangleright **x**_{*i*} denotes a numeric interpretation of an input y_i denotes a numeric interpretation of an output

- ‣ Experience is something tangible, i.e. an observation and eventually a data point, something that can take a numeric form
- \blacktriangleright **x**_{*i*} denotes a numeric interpretation of an input y_i denotes a numeric interpretation of an output

$$
\langle \mathbf{x}_1, y_1 \rangle
$$

$$
\langle \mathbf{x}_2, y_2 \rangle
$$

...

$$
\langle \mathbf{x}_n, y_n \rangle
$$

- ‣ Experience is something tangible, i.e. an observation and eventually a data point, something that can take a numeric form
- \blacktriangleright **x**_{*i*} denotes a numeric interpretation of an input y_i denotes a numeric interpretation of an output

COMP0084 - Intro to ML

$$
\langle \mathbf{x}_1, y_1 \rangle
$$

$$
\langle \mathbf{x}_2, y_2 \rangle
$$

$$
\langle \mathbf{x}_n, y_n \rangle
$$

training

Learning from experience

- ‣ Experience is something tangible, i.e. an observation and eventually a data point, something that can take a numeric form
- \blacktriangleright **x**_{*i*} denotes a numeric interpretation of an input y_i denotes a numeric interpretation of an output

31

$$
\langle \mathbf{x}_1, y_1 \rangle
$$

$$
\langle \mathbf{x}_2, y_2 \rangle
$$

$$
\langle \mathbf{x}_n, y_n \rangle
$$

Learning from experience

- ‣ Experience is something tangible, i.e. an observation and eventually a data point, something that can take a numeric form
- \blacktriangleright **x**_{*i*} denotes a numeric interpretation of an input y_i denotes a numeric interpretation of an output

31

$$
\langle \mathbf{x}_1, y_1 \rangle
$$

$$
\langle \mathbf{x}_2, y_2 \rangle
$$

$$
\langle \mathbf{x}_n, y_n \rangle
$$

$$
\langle \mathbf{X}_{n+1}, \hat{y}_{n+1} = f(\mathbf{X}_{n+1}) \rangle
$$

...

$$
\langle \mathbf{X}_{n+m}, \hat{y}_{n+m} = f(\mathbf{X}_{n+m}) \rangle
$$

- ‣ Experience is something tangible, i.e. an observation and eventually a data point, something that can take a numeric form
- \blacktriangleright **x**_{*i*} denotes a numeric interpretation of an input y_i denotes a numeric interpretation of an output

$$
\langle \mathbf{x}_1, y_1 \rangle
$$

$$
\langle \mathbf{x}_2, y_2 \rangle
$$

$$
\langle \mathbf{x}_n, y_n \rangle
$$

$$
\langle \mathbf{x}_{n+1}, \hat{y}_{n+1} = f(\mathbf{x}_{n+1}) \rangle
$$

$$
\langle \mathbf{x}_{n+m}, \hat{y}_{n+m} = f(\mathbf{x}_{n+m}) \rangle
$$

- ̂
-

► If $\mathscr{L}\left(\hat{\mathbf{y}}, \mathbf{y}\right)$ is "relatively" small, then our model might be learning from experience ▶ But what makes an error "relatively" small? We need to have a solid reference loss value.

Question

We are classifying photos of cats and dogs. A classifier sees a photo of either a cat or a dog and makes a binary decision: does the photo show a cat or a dog? In total, the classifier classifies $1,\!000$ photos. It makes the correct classification $96\,\%$ of the times, i.e. it classifies correctly 960 out of the $1,000$ photos. Is the accuracy of the classifier good?

- ̂
-

COMP0084 - Intro to ML

Question

We are classifying photos of cats and dogs. A classifier sees a photo of either a cat or a dog and makes a binary decision: does the photo show a cat or a dog? In total, the classifier classifies $1,\!000$ photos. It makes the correct classification $96\,\%$ of the times, i.e. it classifies correctly 960 out of the $1,000$ photos. Is the accuracy of the classifier good?

From these $1,000$ photos, we actually know that only 20 are showing cats. *Is the accuracy of classifier good?*

► If $\mathscr{L}\left(\hat{\mathbf{y}}, \mathbf{y}\right)$ is "relatively" small, then our model might be learning from experience ▶ But what makes an error "relatively" small? We need to have a solid reference loss value.

‣ **Supervised learning**

Learn a mapping f from inputs \mathbf{X} to outputs $\mathbf{y}-$ also can be expressed by $f: \mathbf{X} \rightarrow \mathbf{y}$ \mathbf{X} are also called features, observations, covariates, predictors $-$ **y** are also called labels, targets, responses, ground truth \langle **X**, y $>$ can also be referred to as observations or samples

‣ **Unsupervised learning** structure or patterns in **X**

‣ **Reinforcement learning** The system or agent has to learn how to interact with its environment Policy: which action to take in response to an input **X** Different from supervised learning because no definitive responses are given Only rewards — *learning with a critic as opposed to learning with a teacher*

-
-

No outputs associated with the input \mathbf{X} – the task becomes to discover an underlying

- ‣ **Supervised learning** X are also called features, observations, covariates, predictors $-$ **y** are also called labels, targets, responses, ground truth
	- \langle **X**, y $>$ can also be referred to as observations or samples
- ‣ **Unsupervised learning** No outputs associated with the input X – the task becomes to discover an underlying structure or patterns in **X**
- ‣ **Reinforcement learning** The system or agent has to learn how to interact with its environment Policy: which action to take in response to an input **X** Different from supervised learning because no definitive responses are given Only rewards — *learning with a critic as opposed to learning with a teacher*

Learn a mapping f from inputs \mathbf{X} to outputs $\mathbf{y}-$ also can be expressed by $f: \mathbf{X} \rightarrow \mathbf{y}$

‣ **Regression** estimate / predict a continuous output / target variable $i.e.$ learn $f: X \in \mathbb{R}^{n \times m} \rightarrow y \in \mathbb{R}^n$ infectious disease disease in epidemiology

Examples: predict a time series trend (finance, climate, etc.), estimate the prevalence of an

i.e. learn $f: \mathbf{X} \in \mathbb{R}^{n \times m} \to \mathbf{y} \in \{1, 2, ..., C\}$ Examples: detect spam email, medical imaging, text classification, language models

‣ **Classification**

estimate a set of C unordered (and mutually exclusive) labels / classes

‣ **Classification** estimate a set of C unordered (and mutually exclusive) labels / classes $i.e.$ learn $f: X \in \mathbb{R}^{n \times m} \to y \in \{1, 2, ..., C\}$

‣ **Regression** estimate / predict a continuous output / target variable $i.e.$ learn $f: X \in \mathbb{R}^{n \times m} \rightarrow y \in \mathbb{R}^n$ infectious disease disease in epidemiology

Examples: predict a time series trend (finance, climate, etc.), estimate the prevalence of an

Examples: detect spam email, medical imaging, text classification, language models

COMP0084 - Intro to ML 37

‣ Estimate the **prevalence of influenza-like illness** in England based on the **frequency of the search query** "*how long does flu last*"

- ‣ Estimate the **prevalence of influenza-like illness** in England based on the **frequency of the search query** "*how long does flu last*"
- ‣ Linearly related, bivariate correlation of 0.975. Question: *What is the maximum possible correlation?*

COMP0084 - Intro to ML

COMP0084 - Intro to ML 39

- ‣ Estimate the **prevalence of influenza-like illness** in England based on the **frequency of the search query** "*how long does flu last*"
- ‣ Linearly related, bivariate correlation of 0.975. Question: *What is the maximum possible correlation?*
- \triangleright Can we capture this relationship with a straight line? We should be able to.

COMP0084 - Intro to ML 40

- ‣ Estimate the **prevalence of influenza-like illness** in England based on the **frequency of the search query** "*how long does flu last*"
- ‣ Linearly related, bivariate correlation of 0.975. Question: *What is the maximum possible correlation?*
- \triangleright Can we capture this relationship with a straight line? We should be able to.
- Which line is the "best" though?

Let's recap and provide a few more details about our regression task:

- our prediction target / response variable y denotes the weekly influenza-like illness **by an analyzing the contract of August** 2019 prevalence in England from September 2017 until the end of August 2018
- our input or observation **x** denotes the corresponding weekly frequency of the search **x**
means "leavelers dessed" (Casale) factbe expertises regaindered leasting query "how long does flu last" (Google) for the same time period and location
- \triangleright We want to learn a linear mapping f from the input **x** to the output **y** based on our current α observations, i.e. for a weekly query frequency x_i , $f(x_i) = \hat{y}_i = \alpha x_i + \beta \approx y_i$ ̂
- ‣ This linear mapping has two unknown hyper-parameters: {*α*, *β*}
- ‣ Find a line that best fits to our observations

Supervised learning — Ordinary least squares (OLS; *linear*) regression

COMP0084 - Intro to ML 42

- ‣ Estimate the **prevalence of influenza-like illness** in England based on the **frequency of the search query** "*how long does flu last*"
- ‣ Linearly related, bivariate correlation of 0.975. Question: *What is the maximum possible correlation?*
- \triangleright Can we capture this relationship with a straight line? We should be able to.
- Which line is the "best" though?

y

COMP0084 - Intro to ML 43

Supervised learning - OLS regression, alternative point of view

COMP0084 - Intro to ML 44

Supervised learning - OLS regression, *alternative point of view*

- ‣ ~ weekly flu prevalence **y**
- \triangleright **x** ~ weekly search frequency of "*how long does flu last*"

COMP0084 - Intro to ML 45

Supervised learning – OLS regression, *alternative point of view*

- ‣ ~ weekly flu prevalence **y**
- \triangleright **x** ~ weekly search frequency of "*how long does flu last*"
- \rightarrow $f: \mathbf{X} \rightarrow \mathbf{y}$ such that $f(x_i) = \hat{y}_i = \alpha x_i + \beta \approx y_i$ ̂

Solve this using OLS regression.

COMP0084 - Intro to ML 46

 \triangleright The black line is the fit on the training data after applying OLS. It tells us how well can a linear function capture the training data.

Solve this using OLS regression.

Supervised learning – OLS regression, *alternative point of view*

- ‣ ~ weekly flu prevalence **y**
- \triangleright **x** ~ weekly search frequency of "*how long does flu last*"
- \rightarrow $f: \mathbf{X} \rightarrow \mathbf{y}$ such that $f(x_i) = \hat{y}_i = \alpha x_i + \beta \approx y_i$ ̂

COMP0084 - Intro to ML 47

 \triangleright The black line is the fit on the training data after applying OLS. It tells us how well can a linear function capture the training data. **Not bad & not great fit!**

Solve this using OLS regression.

Supervised learning – OLS regression, *alternative point of view*

- ‣ ~ weekly flu prevalence **y**
- \triangleright **x** ~ weekly search frequency of "*how long does flu last*"
- \rightarrow $f: \mathbf{X} \rightarrow \mathbf{y}$ such that $f(x_i) = \hat{y}_i = \alpha x_i + \beta \approx y_i$ ̂

Supervised learning - OLS regression calculus solution

Supervised learning - OLS regression calculus solution

 \triangleright The aim is to learn $f: \mathbf{X} \in \mathbb{R}^{n \times m} \to \mathbf{y} \in \mathbb{R}^n$

Supervised learning - OLS regression calculus solution

- \triangleright The aim is to learn $f: \mathbf{X} \in \mathbb{R}^{n \times m} \to \mathbf{y} \in \mathbb{R}^n$
- ‣ *^f* is a linear function, a set of weights and an intercept term; denoted by **^w** [∈] ^ℝ*^m*

- \triangleright The aim is to learn $f: X \in \mathbb{R}^{n \times m} \to y \in \mathbb{R}^n$
- ‣ *^f* is a linear function, a set of weights and an intercept term; denoted by **^w** [∈] ^ℝ*^m*
- In our regression task (*see previous slides*), there is 1 weight (α) and the intercept (β) \bold{X} has one column with the values of \bold{x} and the other column is 1s

- \triangleright The aim is to learn $f: X \in \mathbb{R}^{n \times m} \to y \in \mathbb{R}^n$
- ‣ *^f* is a linear function, a set of weights and an intercept term; denoted by **^w** [∈] ^ℝ*^m*
- In our regression task (*see previous slides*), there is 1 weight (α) and the intercept (β) \bold{X} has one column with the values of \bold{x} and the other column is 1s
- ‣ Minimise a loss function known as residual sum or squares (*equivalent to mean squared* $\bm{\epsilon}$ error that we will see next): $\mathscr{L}\left(\mathbf{w}\right)=\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}$ $\frac{2}{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})$ ⊤ $(Xw - y)$

- \triangleright The aim is to learn $f: X \in \mathbb{R}^{n \times m} \to y \in \mathbb{R}^n$
- ‣ *^f* is a linear function, a set of weights and an intercept term; denoted by **^w** [∈] ^ℝ*^m*
- In our regression task (*see previous slides*), there is 1 weight (α) and the intercept (β) \bold{X} has one column with the values of \bold{x} and the other column is 1s
- ‣ Minimise a loss function known as residual sum or squares (*equivalent to mean squared* $\bm{\epsilon}$ error that we will see next): $\mathscr{L}\left(\mathbf{w}\right)=\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}$ $\frac{2}{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})$ ⊤ $(Xw - y)$ • This can also be written as: $\mathscr{L}(\mathbf{w}) = \mathscr{L}(\alpha, \beta) =$ *n* ∑ $i=1$ $(\alpha x_i + \beta - y_i)$ 2
-

Supervised learning - OLS regression calculus solution

Supervised learning – OLS regression calculus solution

- \triangleright The aim is to learn $f: \mathbf{X} \in \mathbb{R}^{n \times m} \to \mathbf{y} \in \mathbb{R}^n$
- ‣ *^f* is a linear function, a set of weights and an intercept term; denoted by **^w** [∈] ^ℝ*^m*
- In our regression task (*see previous slides*), there is 1 weight (α) and the intercept (β) \bold{X} has one column with the values of \bold{x} and the other column is 1s
- ‣ Minimise a loss function known as residual sum or squares (*equivalent to mean squared* $\bm{\epsilon}$ error that we will see next): $\mathscr{L}\left(\mathbf{w}\right)=\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}$ $\frac{2}{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})$ ⊤ $(Xw - y)$

Supervised learning – OLS regression calculus solution

- \triangleright The aim is to learn $f: \mathbf{X} \in \mathbb{R}^{n \times m} \to \mathbf{y} \in \mathbb{R}^n$
- ‣ *^f* is a linear function, a set of weights and an intercept term; denoted by **^w** [∈] ^ℝ*^m*
- In our regression task (*see previous slides*), there is 1 weight (α) and the intercept (β) \bold{X} has one column with the values of \bold{x} and the other column is 1s
- ‣ Minimise a loss function known as residual sum or squares (*equivalent to mean squared* $\bm{\epsilon}$ error that we will see next): $\mathscr{L}\left(\mathbf{w}\right)=\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}$ $\frac{2}{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})$ ⊤ $(Xw - y)$ ‣ Derivative of the loss with respect to **w**: ∂ℒ ∂**w** $= -2X^{\mathsf{T}}y + 2X^{\mathsf{T}}Xw$
-

- \triangleright The aim is to learn $f: \mathbf{X} \in \mathbb{R}^{n \times m} \to \mathbf{y} \in \mathbb{R}^n$
- ‣ *^f* is a linear function, a set of weights and an intercept term; denoted by **^w** [∈] ^ℝ*^m*
- In our regression task (*see previous slides*), there is 1 weight (α) and the intercept (β) \bold{X} has one column with the values of \bold{x} and the other column is 1s
- ‣ Minimise a loss function known as residual sum or squares (*equivalent to mean squared* $\bm{\epsilon}$ error that we will see next): $\mathscr{L}\left(\mathbf{w}\right)=\left\|\mathbf{X}\mathbf{w}-\mathbf{y}\right\|_{2}^{2}$ $\frac{2}{2} = (\mathbf{X}\mathbf{w} - \mathbf{y})$ ⊤ $(Xw - y)$ ‣ Derivative of the loss with respect to **w**: ∂ℒ ∂**w** $= -2X^{\mathsf{T}}y + 2X^{\mathsf{T}}Xw$
-
- ► Set this to 0 and hence $\mathbf{w} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{y}$ as long as $\mathbf{X}^\top \mathbf{X}$ is full rank which means that the observations (rows) in $\mathbf X$ are more than the features ($n > m$) and that the features have no linear dependence −1 $\mathbf{X}^\top \mathbf{y}$ as long as $\mathbf{X}^\top \mathbf{X}$

- ► Going back to our flu rate modelling example, $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ would give $\mathbf{w} = [0.93351 - 0.036631]$, i.e. $\alpha = 0.93351$ and $\beta = 0.036631$
-
- *flu last*"
- \blacktriangleright And then compare it with the actual flu prevalence in England for 2018/19

‣ The question now becomes, **how well will this model do in the next flu season?** i.e. how well would the model perform on unseen data / data that it has not been trained on?

‣ Let's use the above values of and to estimate weekly flu prevalence in England for the *α β*season 2018/19 based on the corresponding frequency of the search query "*how long does*

−1 **X**⊤**y**

Supervised learning $-$ OLS model training $\&$ testing

- ► These (*red* line, dot marker) are the estimated (*inferred*) flu rates in 2018/19 (*to be exact from September 2018 to August 2019*) based on the OLS model and the frequency of the search query "*how long does flu last*"
- ‣ Recall, we trained our model using non-overlapping data from 2017/18 (*September 2017 to August 2018*)

COMP0084 - Intro to ML 51

COMP0084 - Intro to ML 52

Supervised learning $-$ OLS model training & testing

COMP0084 - Intro to ML 52

Supervised learning $-$ OLS model training $\&$ testing

- ‣ The **black solid** line represents the corresponding flu rates as reported by a health agency in the UK
- ‣ *Do you think this simple OLS model based on a single web search query did well?*
- RMSE = 0.0632 (*root mean squared error*) MAE = 0.0519 (*mean absolute error*)

 $= 0.919$ (bivariate correlation)
 $= 0.0632$ (root mean squared error)

COMP0084 - Intro to ML 52

Supervised learning $-$ OLS model training $\&$ testing

- ‣ The **black solid** line represents the corresponding flu rates as reported by a health agency in the UK
- ‣ *Do you think this simple OLS model based on a single web search query did well?*
- $= 0.919$ (bivariate correlation)
 $= 0.0632$ (root mean squared error) RMSE = 0.0632 (*root mean squared error*) MAE = 0.0519 (*mean absolute error*)
- \triangleright considering the simplicity of the model, *its accuracy is quite surprising*

Supervised learning — Gradient descent

Supervised learning — Gradient descent

\triangleright **Gradient descent**: optimisation algorithm that minimises a loss function \mathcal{J} with respect to

COMP0084 - Intro to ML 53

a set of hyperparameters

- \triangleright **Gradient descent**: optimisation algorithm that minimises a loss function $\mathscr F$ with respect to a set of hyperparameters
- ► Loss function for ordinary least squares (OLS) regression? If $\hat{y} = Xw$ denotes our estimates for **y**, then the loss function for OLS is their mean squared difference (error):

$$
\mathcal{J}(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}_i)
$$

$$
{i}-y{i}\big)^{2}, where \hat{y}_{i} \in \hat{\mathbf{y}}, y_{i} \in \mathbf{y}
$$

- \triangleright **Gradient descent**: optimisation algorithm that minimises a loss function $\mathscr F$ with respect to a set of hyperparameters
- ► Loss function for ordinary least squares (OLS) regression? If $\hat{y} = Xw$ denotes our estimates for **y**, then the loss function for OLS is their mean squared difference (error):

$$
\mathcal{J}(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}_i)
$$

$$
{i}-y{i}\right) ^{2}, where \hat{y}_{i} \in \hat{\mathbf{y}}, y_{i} \in \mathbf{y}
$$

- ‣ Basic **steps** of gradient descent
	- define a loss function, \mathscr{J}
	- compute the partial derivatives of $\mathscr J$ w.r.t. each hyperparameter
	- $-$ update hyperparameters using their partial derivatives and learning rate ℓ often $\in (0,1)$
	- repeat until convergence

- ‣ **Learning rate:** how far away are we going to go in the opposite direction of the partial derivative / how much change are we going to impose? *we are going to see an example of this*
- ‣ **Why does gradient descent work?** We are taking steps in the opposite direction of the partial gradient of each hyperparameter to identify a local minimum of the loss.
- ‣ **When does it not work?** Not directly applicable to non-differentiable loss functions (but there exist workarounds)

- **Hypothesis:** $\hat{y}_i = \alpha x_i + \beta$ — *a flu estimate is a linear function of the frequency of the search query* **The Contract of Contract o**
- ‣ **Hyperparameters:** {*α*, *β*} *these are unknown and should be estimated using gradient descent*
- ‣ **Loss function:** $(\alpha, \beta) =$ 1 2*n n* ∑ *i*=1 $(\hat{y}_i - y_i)$ **The Contract of Contract o**
- ‣ **Goal:** $\arg \min_{\alpha,\beta} \mathcal{F}(\alpha,\beta)$

- In our example, we are modelling a flu rate y_i using the frequency of a search query x_i
- \triangleright Start with some initial values for *α* and *β* denoted by α_0 and β_0 , respectively

- Start with some initial values for α and β denoted by α_0 and β_0 , respectively
- In iteration $t + 1$ of the gradient descent algorithm, update α and β with: $t+1$ of the gradient descent algorithm, update α and β

COMP0084 - Intro to ML 56

$$
\alpha_{t+1} = \alpha_t - \ell \frac{\partial \mathcal{J}(\alpha, \beta)}{\partial \alpha} \text{ and } \beta_{t+1} = \beta_t - \ell \frac{\partial \mathcal{J}(\alpha, \beta)}{\partial \beta}
$$

where ℓ often $\in (0,1)$ denotes the learning rate we want to impose

- Start with some initial values for α and β denoted by α_0 and β_0 , respectively
- In iteration $t + 1$ of the gradient descent algorithm, update α and β with: $t+1$ of the gradient descent algorithm, update α and β

$$
\alpha_{t+1} = \alpha_t - \ell \frac{\partial \mathcal{J}(\alpha, \beta)}{\partial \alpha} \text{ and } \beta_{t+1} = \beta_t - \ell \frac{\partial \mathcal{J}(\alpha, \beta)}{\partial \beta}
$$

where ℓ often $\in (0,1)$ denotes the learning rate we want to impose

 \triangleright NB: both derivatives update in iteration $t + 1$ based on values from iteration t

- Start with some initial values for α and β denoted by α_0 and β_0 , respectively
- In iteration $t + 1$ of the gradient descent algorithm, update α and β with: $t+1$ of the gradient descent algorithm, update α and β

- \triangleright NB: both derivatives update in iteration $t + 1$ based on values from iteration t
- ‣ Repeat until convergence

$$
\alpha_{t+1} = \alpha_t - \ell \frac{\partial \mathcal{J}(\alpha, \beta)}{\partial \alpha} \text{ and } \beta_{t+1} = \beta_t - \ell \frac{\partial \mathcal{J}(\alpha, \beta)}{\partial \beta}
$$

where ℓ often $\in (0,1)$ denotes the learning rate we want to impose

Loss function:
$$
\mathscr{J}(\alpha, \beta) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2
$$
 n samples, 2*n* is a convention, $\mathscr{J} = \text{MSE}/2$

$$
= \frac{1}{2n} \sum_{i=1}^{n} (\alpha x_i + \beta - y_i)^2
$$

Supervised learning $-$ OLS with gradient descent, the derivatives

2

$$
\frac{\partial \mathcal{J}(\alpha,\beta)}{\partial \alpha} = \frac{1}{2n} \sum_{i=1}^{n} \left(2 \left(\alpha x_i +
$$

 $(2 (\alpha x_i + \beta - y_i) x_i) =$ 1 *n n* ∑ *i*=1 $((\alpha x_i + \beta - y_i)x_i)$

Loss function:
$$
\mathscr{J}(\alpha, \beta) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2
$$
 n samples, 2*n* is a convention, $\mathscr{J} = \text{MSE}/2$

$$
= \frac{1}{2n} \sum_{i=1}^{n} (\alpha x_i + \beta - y_i)^2
$$

Supervised learning $-$ OLS with gradient descent, the derivatives

2

$$
\frac{\partial \mathcal{J}(\alpha, \beta)}{\partial \alpha} = \frac{1}{2n} \sum_{i=1}^{n} \left(2 \left(\alpha x_i + \alpha \right) \right)
$$

$$
\frac{\partial \mathcal{J}(\alpha,\beta)}{\partial \beta} = \frac{1}{n} \sum_{i=1}^{n} (\alpha x_i + \beta -
$$

 $(2 (\alpha x_i + \beta - y_i) x_i) =$ 1 *n n* ∑ *i*=1 $((\alpha x_i + \beta - y_i)x_i)$

(*αxi* + *β* − *yi*)

Supervised learning $-$ OLS with gradient descent, the derivatives

 $(\mathbf{w}, \beta) =$

COMP0084 - Intro to ML 58

$$
= \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2
$$

=
$$
\frac{1}{2n} \sum_{i=1}^{n} (w_1 x_{i,1} + \dots + w_m x_{i,m} + \beta - y_i)^2
$$

What if we had *m* predictors?

 $\partial \mathcal{J} (\mathbf{w}, \beta)$ ∂w_j = 1 *n n* ∑ *i*=1 $\partial \mathcal{J} (\mathbf{w}, \beta)$ ∂*β* $=$?

$$
\left((w_1 x_{i,1} + \dots + w_m x_{i,m} + \beta - y_i) x_{i,j} \right)
$$

- ‣ OLS example: inferring flu prevalence based on the frequency of 1 search query
- Let's explore the space of hyperparameter values for OLS $\{\alpha, \beta\}$ and the corresponding values of the loss function (α, β) – 3-dimensional plot (surface or mesh plot)
- ‣ Convex loss (**easier task / global minimum**)
- ‣ Big (half) dot/ball denotes the exact OLS solution (*no gradient descent used*)

 $\bm{\alpha}$ **,** \varnothing **)**

COMP0084 - Intro to ML 59

0.04 $\sum 0.08$ 0.12 0.16

 $COMPO084$ - Intro to ML 60

‣ Let's start from a point in the grid, set some initial values for the hyperparameters and attempt to solve this with coordinate descent

 $\bm{\alpha}$ **,** \varnothing **)**

0.04

0.08

J(

0.12

0.16

 $COMPO084$ - Intro to ML 60

‣ Let's start from a point in the grid, set some initial values for the hyperparameters and attempt to solve this with coordinate descent

$$
\bullet \quad \alpha_0 = 0.2, \beta_0 = -0.2
$$

$$
\blacktriangleright \ell = 0.02 \qquad \qquad \text{(learning rate)}
$$

 $COMPOO84$ - Intro to ML 60

 \blacktriangleright Let's start from a point in the grid, set some initial values for the hyperparameters and attempt to solve this with coordinate descent

$$
\bullet \quad \alpha_0 = 0.2, \beta_0 = -0.2
$$

- $\epsilon \quad \epsilon = 0.02$ (*learning rate*)
- ‣ Convergence criterion: How much has $\mathscr{J}(\alpha,\beta)$ changed in the past k iterations?

0.04 0.08 **J(,** \varnothing **)** 0.12 0.16

 $\bm{\alpha}$

 \blacktriangleright Let's start from a point in the grid, set some initial values for the hyperparameters and attempt to solve this with coordinate descent

- $\epsilon \quad \epsilon = 0.02$ (*learning rate*)
- ‣ Convergence criterion: How much has $\mathscr{J}(\alpha,\beta)$ changed in the past k iterations?
- ‣ Gradient descent's solution almost identical to exact OLS solution (**expected?**)

$$
\bullet \quad \alpha_0 = 0.2, \beta_0 = -0.2
$$

 $COMPOO84$ - Intro to ML 61

- \blacktriangleright $\ell = 0.02$ (same learning rate)
- ‣ In this case, it does not affect our solution (**why?**)

‣ Let's change the starting point

$$
\alpha_0 = 1.1, \beta_0 = 0.5
$$

 $COMPOO84$ - Intro to ML 61

- \blacktriangleright $\ell = 0.02$ (same learning rate)
- ‣ In this case, it does not affect our solution (**why?**)

‣ Let's change the starting point

$$
\alpha_0 = 1.1, \beta_0 = 0.5
$$

- ‣ Effect of **learning rate** *ℓ*
	- if it is too small, gradient descent can be slow
	- if it is too large, gradient descent may fail to converge (overshoots the minimum) — adaptive learning rate (*by using line search*)
	-
- ‣ Different initialisations might help get past local optima
- ‣ **Batch** gradient descent (*presented today*): use the entire training set for gradient updates — guaranteed convergence to a local minimum — slow on large problems (e.g. neural networks)
- ‣ **Stochastic** gradient descent: use one training sample for gradient updates — faster convergence on large redundant data sets — hard to reach high accuracy
- ‣ **Mini-batch** gradient descent: use a subset of the training set for gradient updates — very common in neural network training
	-
	- better in avoiding local minima
	- what is the best mini-batch size (number of training samples to use)?

‣ **Regression** estimate / predict a continuous output / target variable

$i.e.$ learn $f: X \in \mathbb{R}^{n \times m} \rightarrow y \in \mathbb{R}^n$ infectious disease disease in epidemiology

‣ **Classification** estimate a set of C unordered (and mutually exclusive) labels / classes $\mathbf{i.e.}$ learn $f: \mathbf{X} \in \mathbb{R}^{n \times m} \to \mathbf{y} \in \{1, 2, ..., C\}$

Examples: predict a time series trend (finance, climate, etc.), estimate the prevalence of an

Examples: detect spam email, medical imaging, text classification, language models

- ‣ **Binary classification** means that we only have two label categories, e.g. **>** *spam* vs. *not spam* email
	- **>** *relevant* vs. *not relevant* document
- \blacktriangleright if $f_{\mathbf{w}}(x_i) \geq 0.5$, then SPAM if $f_{\textbf{w}}\left(x_{i}\right) < 0.5$, then not SPAM
- What if we used OLS to learn $f_{\bf w}$? **w**

COMP0084 - Intro to ML 64

Supervised learning – Binary classification

COMP0084 - Intro to ML 65

Supervised learning - Binary classification

- ‣ Binary classification means that we only have two label categories, e.g.
	- **>** *spam* vs. *not spam* email
	- **>** *relevant* vs. *not relevant* document
- \blacktriangleright if $f_{\mathbf{w}}(x_i) \geq 0.5$, then SPAM if $f_{\textbf{w}}\left(x_{i}\right) < 0.5$, then not SPAM
- What if we used OLS to learn f_w ? *Looks perfectly fine?* **w**

 $COMPO084$ - Intro to ML 66

Supervised learning - Binary classification

- ‣ **Binary classification** means that we only have two label categories, e.g.
	- **>** *spam* vs. *not spam* email
	- **>** *relevant* vs. *not relevant* document
- \blacktriangleright if $f_{\mathbf{w}}(x_i) \geq 0.5$, then SPAM if $f_{\textbf{w}}\left(x_{i}\right) < 0.5$, then not SPAM
- What if we used OLS to learn f_w ? *Looks perfectly fine?* **w**
- ‣ Let's add one more observation to our data. How would that affect our OLS classifier?

Supervised learning - Binary classification

COMP0084 - Intro to ML 67

- ‣ **Binary classification** means that we only have two label categories, e.g.
	- **>** *spam* vs. *not spam* email
	- **>** *relevant* vs. *not relevant* document
- \blacktriangleright if $f_{\mathbf{w}}(x_i) \geq 0.5$, then SPAM if $f_{\textbf{w}}\left(x_{i}\right) < 0.5$, then not SPAM
- What if we used OLS to learn f_w ? *Looks perfectly fine?* **w**
- ‣ Let's add one more observation to our data. How would that affect our OLS classifier? **Not great!**

Supervised learning – Binary classification

COMP0084 - Intro to ML 68

- ‣ **Binary classification** means that we only have two label categories, e.g.
	- **>** *spam* vs. *not spam* email
	- **>** *relevant* vs. *not relevant* document
- \blacktriangleright if $f_{\mathbf{w}}(x_i) \geq 0.5$, then SPAM if $f_{\textbf{w}}\left(x_{i}\right) < 0.5$, then not SPAM
- What if we used OLS to learn f_w ? *Looks perfectly fine?* **w**
- ‣ Let's add one more observation to our data. How would that affect our OLS classifier? **Not great!**
- \blacktriangleright It is not impossible to separate these classes — we just need a **different function**.

COMP0084 - Intro to ML 69

- ‣ Logistic regression is a classification method that learns a sigmoid separator
- Assume we have an m -dimensional observation **x** ∈ ℝ*^m*
- ▶ We want $0 \le f_{\mathbf{w}}(\mathbf{x}) \le 1$, where $\mathbf{w} \in \mathbb{R}^m$ are the corresponding weights
- ‣ Sigmoid or logistic function $\sigma(z) =$ 1 $1 + e^{-z}$
- ‣ *f* $f_{\mathbf{w}}(\mathbf{x}) = \sigma\left(\mathbf{w}^{\top}\mathbf{x}\right) \in (0,1)$

z

it can be seen as a pseudo-probability

Supervised learning - Logistic regression

Supervised learning – Logistic regression's loss function

- ‣ Logistic regression uses a cross-entropy loss function between the projection of **x** and label $y \in \{0,1\}$
- $\blacktriangleright \mathscr{L}(\sigma_{\mathbf{w}}(\mathbf{x}), y) = -\ln(\sigma_{\mathbf{w}}(\mathbf{x}))$ if if $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(\sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 1$ $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(1 - \sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 0$
- Derivation from Bernoulli distribution (see SLP)
- **Intuitively** — we want a loss that is easy to differentiate $-$ if $y = 1$, $\sigma_{\mathbf{w}}(\mathbf{x}) \rightarrow 1$: $\mathscr{L}(\sigma_{\mathbf{w}}(\mathbf{x}), y) \rightarrow 0$ $\mathcal{L} = \text{if } y = 1, \sigma_{\mathbf{w}}(\mathbf{x}) \to 0: \mathcal{L}(\sigma_{\mathbf{w}}(\mathbf{x}), y) \to \infty$

Supervised learning – Logistic regression's loss function

- ‣ Logistic regression uses a cross-entropy loss function between the projection of **x** and label $y \in \{0,1\}$
- $\blacktriangleright \mathscr{L}(\sigma_{\mathbf{w}}(\mathbf{x}), y) = -\ln(\sigma_{\mathbf{w}}(\mathbf{x}))$ if if $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(\sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 1$ $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(1 - \sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 0$
- Derivation from Bernoulli distribution (see SLP)
- **Intuitively** — we want a loss that is easy to differentiate $-$ if $y = 0$, $\sigma_{\mathbf{w}}(\mathbf{x}) \rightarrow 0: \mathscr{L}(\sigma_{\mathbf{w}}(\mathbf{x}), y) \rightarrow 0$ $-$ if $y = 0$, $\sigma_{\mathbf{w}}(\mathbf{x}) \rightarrow 1$: $\mathscr{L}(\sigma_{\mathbf{w}}(\mathbf{x}), y) \rightarrow \infty$

Supervised learning - Logistic regression with gradient descent

if if $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(\sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 1$ $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(1 - \sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 0$ **Cross-entropy loss function**

Supervised learning - Logistic regression with gradient descent

if $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(\sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 1$ $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(1 - \sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 0$ **Cross-entropy loss function Logistic (sigmoid) function**

 $\sigma_{\mathbf{w}}(\mathbf{x}_i) = \left(1 + e^{-\mathbf{w}^\top \mathbf{x}_i}\right)$ if $y = 1$ and $\left(1 - \frac{1}{2} \right)^{-1}$

$$
\mathcal{J}(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \ln \sigma_{\mathbf{w}} \left(\mathbf{x}_i \right) + \left(1 - y_i \right) \ln \left(1 - \sigma_{\mathbf{w}} \left(\mathbf{x}_i \right) \right) \right]
$$

$\sigma_{\mathbf{w}}(\mathbf{x}_i) = \left(1 + e^{-\mathbf{w}^\top \mathbf{x}_i}\right)$ if $y = 1$ and $\left(1 - \frac{1}{2} \right)^{-1}$

Supervised learning – Logistic regression with gradient descent

 if $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(\sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 1$ $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(1 - \sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 0$ **Cross-entropy loss function Logistic (sigmoid) function**

Our label y_i is either 1 or 0 for all our observations. So, for each observation only one part of the loss function is activated / used. Since we have n observations the loss function takes the form:

 $\sigma_{\mathbf{w}}(\mathbf{x}_i) = \left(1 + e^{-\mathbf{w}^\top \mathbf{x}_i}\right)$ if $y = 1$ and $\left(1 - \frac{1}{2} \right)^{-1}$

 $\left[y_i \ln \sigma_w \left(\mathbf{x}_i \right) + \left(1 - y_i \right) \ln \left(1 - \sigma_w \left(\mathbf{x}_i \right) \right) \right]$

Supervised learning – Logistic regression with gradient descent

if $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(\sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 1$ $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(1 - \sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 0$ **Cross-entropy loss function Logistic (sigmoid) function**

Combined loss function

 $\sigma_{\mathbf{w}}(\mathbf{x}_i) = (1 + e^{-\mathbf{w}^\top \mathbf{x}_i})$) −1

Supervised learning - Logistic regression with gradient descent

Cross-entropy loss function	Logistic (sigmoid) function
$\mathcal{L}(\sigma_w(\mathbf{x}), y) = -\ln(\sigma_w(\mathbf{x}))$ if $y = 1$	$\sigma_w(\mathbf{x}_i) = (1 + e^{-w^\top \mathbf{x}_i})^{-1}$
$\mathcal{L}(\sigma_w(\mathbf{x}), y) = -\ln(1 - \sigma_w(\mathbf{x}))$ if $y = 0$	$\sigma_w(\mathbf{x}_i) = (1 + e^{-w^\top \mathbf{x}_i})^{-1}$
Combined loss function	$\mathcal{J}(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^n [y_i \ln \sigma_w(\mathbf{x}_i) + (1 - y_i) \ln(1 - \sigma_w(\mathbf{x}_i))]$

$$
\ln (\sigma_{\mathbf{w}}(\mathbf{x}_i)) = \ln (1) - \ln \left(1 + e^{-\mathbf{w}^\top \mathbf{x}_i} \right) = -\ln \left(1 + e^{-\mathbf{w}^\top \mathbf{x}_i} \right)
$$

The loss function
$$
\mathcal{J}(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{w}^\top \mathbf{x}_i y_i - \mathbf{w}^\top \mathbf{x}_i - \ln \left(1 + e^{-\mathbf{w}^\top \mathbf{x}_i} \right) \right]
$$
 becomes:

n $i=1$ \blacksquare becomes:

Let's incorporate the actual value of the sigmoid function and attempt to simplify:

$$
\sigma_{\mathbf{w}}\left(\mathbf{x}_{i}\right)=\left(1+e^{-\mathbf{w}^{\top}\mathbf{x}_{i}}\right)^{-1}
$$

$$
\mathbf{w}^{\mathsf{T}} \mathbf{x}_i y_i - \mathbf{w}^{\mathsf{T}} \mathbf{x}_i - \ln \left(1 + e^{-\mathbf{w}^{\mathsf{T}} \mathbf{x}_i} \right)
$$

Supervised learning $-$ Logistic regression with gradient descent

if if $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(\sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 1$ $\mathscr{L}\left(\sigma_{\mathbf{w}}(\mathbf{x}), y\right) = -\ln\left(1 - \sigma_{\mathbf{w}}(\mathbf{x})\right)$ if $y = 0$ **Cross-entropy loss function Logistic (sigmoid) function**

Combined loss function $(w) = -\frac{1}{2}$ *n n* $\sum_{i=1}$

∂ (**w**) ∂**w***^j* $= - \frac{1}{1}$ *n n* $\sum_{i=1}$ *yi* $= - \frac{1}{1}$ *n* ∑

$$
\[y_i x_{i,j} - x_{i,j} + e^{-\mathbf{w}^\top \mathbf{x}_i} \left(1 + e^{-\mathbf{w}^\top \mathbf{x}_i}\right)^{-1} x_{i,j}\]
$$
\n
$$
\[x_{i,j} \left(y_i - \sigma_{\mathbf{w}}\left(\mathbf{x}_i\right)\right)\]
$$

n

i=1

Partial derivative

$$
\sigma_{\mathbf{w}}(\mathbf{x}_{i}) = (1 + e^{-\mathbf{w}^{\top}\mathbf{x}_{i}})^{-1}
$$
\nst

\n
$$
\mathbf{w}, \quad 1 + e^{-\mathbf{w}^{\top}\mathbf{x}_{i}} \bigg)
$$

Cross-entropy loss function Logistic (sigmoid) function

$$
1 \\
$$

$$
\overline{\mathbf{Q}}
$$

Supervised learning - Logistic regression with gradient descent

Cross-entropy loss function	Logistic (sigmoid	
$\mathcal{L}(\sigma_w(x), y) = -\ln(\sigma_w(x))$ if $y = 1$	$\sigma_w(x_i) = (1 + \sigma_w(x), y) = -\ln(1 - \sigma_w(x))$ if $y = 0$	$\sigma_w(x_i) = (1 + \sigma_w(x), y) = -\ln(1 - \sigma_w(x))$ if $y = 0$
Combined loss function	$\mathcal{F}(w)$ squarees example, i.e. initial the moment of the least the partial derivatives for each w_j , then update w_j 's using a learning rate.	$1 + e^{-w^\top x_j}$
Partial derivative	$\frac{\partial \mathcal{F}(w)}{\partial w_j}$ square value w_j 's using a learning rate.	$+ e^{-w^\top x_j}$
Pertial derivative	$\frac{\partial \mathcal{F}(w)}{\partial w_j}$ square value $= -\frac{1}{n} \sum_{i=1}^n [x_{i,j}(y_i - \sigma_w(x_i))]$	

$$
\begin{array}{c}\n \mathbf{e} \\
\mathbf{e} \\
\mathbf{e} \\
\mathbf{v}^{\mathsf{T}}\mathbf{x}_i\n \end{array}\n \begin{array}{c}\n \mathbf{e} \\
\mathbf{x}_{i,j}\n \end{array}
$$

]

- \triangleright Going back to the application of estimating flu prevalence using web search activity
- \triangleright Now, we want to use the frequency of 4 search queries to predict whether the flu rate in a members is also used to we set the set of the population is above a low-epidemic threshold or not — binary classification task

 $y_i = 1$, if the flu rate is above a low-epidemic threshold $y_j = 0$, if the flu rate is below or equal to a low-epidemic threshold

- \triangleright We have in total 104 weekly observations $-$ observation matrix $\mathbf{X} \in \mathbb{R}^{104 \times 4}$ — queries: "*how long does flu last*", "*flu symptoms*", "*cough flu*", "*flu recovery*"
	- $-$ labels $y \in \{0,1\}^{104}$

- \triangleright We have in total 104 weekly observations $-$ observation matrix $\mathbf{X} \in \mathbb{R}^{104 \times 4}$ — queries: "*how long does flu last*", "*flu symptoms*", "*cough flu*", "*flu recovery*"
	- $-$ labels $y \in \{0,1\}^{104}$
- ▶ 4-fold cross validation to assess classification performance
	- $-$ form 4 folds (equally sized baskets) of the data,
	- $-$ train a classifier using 3 of them, test (evaluate) on the remaining 1
	- report average performance metrics

▶ $\hat{y} \in \{0,1\}^n$ denotes our predictions and $y \in \{0,1\}^n$ the correct labels ‣ accuracy = ‣ precision = \blacktriangleright recall $=$ ̂ number of times $\hat{y}_i = y$ **The Contract of Contract o** *n* number of times $\hat{y}_i = 1$ AND $\hat{y}_i = y_i$ **The Contract of Contract o** number of times $\hat{y}_i = 1$ **The Contract of Contract o** number of times $\hat{y}_i = 1$ AND $\hat{y}_i = y_i$ **The Contract of Contract o** number of times $y_i = 1$

 \blacktriangleright F₁ score is the harmonic mean between precision and recall F_1 score = $2 \cdot$ precision ⋅ recall $precision + recall$

COMP0084 - Intro to ML 78

When we predicted a positive class, how often did we get it right?

How often did we predict the positive class correctly relatively to all samples that were positive?

flu symptoms: 78.058

how long does flu last: 24.537

flu recovery: 3.8977

cough flu: -14.663

logistic regression weights using all data

logistic regression performance metrics

 $accuracy = 0.923(0.070)$ precision $= 0.902 (0.121)$ recall $= 0.844 (0.120)$ F_1 score = $0.871(0.116)$

> *Download the data from [dropbox.com/s/rgyg190whw26qrj/data-COMP0084-intro-to-ml.zip?dl=0](https://www.dropbox.com/s/rgyg190whw26qrj/data-COMP0084-intro-to-ml.zip?dl=0) and try it yourself…*

Supervised learning – Logistic regression, example

- labels, i.e. most tasks require multi-class classification
- We can use different classifiers (machine learning models) that support multi-class classification such as neural network architectures and generative models
- ‣ We can also use a binary classifier
	- $-$ one vs. rest strategy: n classes require n classifiers to be trained highest score determines the classification label
	- $\frac{1}{\sqrt{2}}$ one strategy: *n* classes require $\frac{1}{\sqrt{2}}$ classifiers to be trained voting scheme, class with the most votes wins

 \triangleright Binary classification is the simplest classification case $-$ we often have more than two

n(*n* − 1) 2

81

- ‣ **Supervised learning** $-$ **X** are also called features, observations, covariates, predictors $-$ y are also called labels, targets, responses, ground truth \langle **X**, y $>$ can also be referred to as observations or samples
- ‣ **Unsupervised learning** No outputs associated with the input \mathbf{X} – the task becomes to discover an underlying structure or patterns in **X**
- ‣ **Reinforcement learning** The system or agent has to learn how to interact with its environment Policy: which action to take in response to an input **X** Different from supervised learning because no definitive responses are given Only rewards — *learning with a critic as opposed to learning with a teacher*

Learn a mapping f from inputs \mathbf{X} to outputs $\mathbf{y}-$ also can be expressed by $f: \mathbf{X} \rightarrow \mathbf{y}$

- \triangleright In the previous machine learning paradigms we had an input \bf{X} and an output \bf{y} and we wanted to learn $f: \mathbf{X} \rightarrow \mathbf{y}$
- we can associate our inputs with
- structure) from a data set (a set of observations \mathbf{X})

 \triangleright In unsupervised learning, there are no particular outputs or, better, response variables that

• Our goal now is different: we want to extract some kind of pattern (a rule, an intrinsic

- ‣ Is association rule mining a form of unsupervised learning? *Yes, it is!*
- ‣ Some unsupervised learning methods are quite common statistical operations, e.g. dimensionality reduction methods, principal component analysis
- In machine learning, unsupervised learning is almost synonymous to clustering
- ‣ Clustering aims to group similar observations (or features) together into… **clusters!**

Unsupervised learning — Clustering

- ‣ ^A**cluster** contains data instances that are similar to each other (or if you visualise this are very close to each other in a vector space) — in very lay terms, different clusters are supposed to be capturing a different part of this vector space
- ‣ So, clustering is a grouping of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups
- \triangleright The plot shows 3 very visible clusters

Unsupervised learning — Clustering

- ‣ ^A**cluster** contains data instances that are similar to each other (or if you visualise this are very close to each other in a vector space) — in very lay terms, different clusters are supposed to be capturing a different part of this vector space
- ‣ So, clustering is a grouping of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups
- \triangleright The plot shows 3 very visible clusters

- ‣ Computational biology, e.g. understand properties of genes
- ‣ Medicine, e.g. in medical imaging
- ‣ Marketing, e.g. segment customers according to their underlying characteristics, then conduct targeted marketing
- Document clustering, topic models, text clustering in general
- ‣ Applicable to tasks that require "pattern analysis" and in many different research disciplines for analysing outcomes (e.g. in psychology, sociology, computer science, neuroscience)

- ‣ Many different clustering algorithms / methods — partitional, hierarchical, hard/soft, generative, and even supervised
- \triangleright A distance (dissimilarity) or a similarity function is often a key component for determining clusters
- ‣ Clustering goal is to maximise the distance between different clusters (inter-cluster distance) and at the same time to minimise the distance of elements in a cluster (intracluster distance)
- \triangleright The quality of a clustering outcome depends on the algorithm, the distance function, and eventually the specifics of an application
- \triangleright However, determining the actual quality of a cluster is not always an easy task given the lack of supervision

- cardinality
- outliers, not clusters

• Outliers are objects that do not belong to any cluster or form clusters of very small

• In some applications (e.g. fraud detection) we are actually interested in discovering

$\overline{\text{Clustering}} - \text{Distance}/\overline{\text{similarity functions}}$

Clustering – Distance / similarity functions

‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- ► Let's also first assume that both **x** and **z** contain discrete values; these can be binary values (0 or 1), or specific element identifiers

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- ► Let's also first assume that both **x** and **z** contain discrete values; these can be binary values (0 or 1), or specific element identifiers
- The Jaccard similarity provides a simple way to compare these observations $Jsim (x, z) =$ |**x** ∩ **z** | |**x** ∪ **z** |

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- ► Let's also first assume that both **x** and **z** contain discrete values; these can be binary values (0 or 1), or specific element identifiers
- The Jaccard similarity provides a simple way to compare these observations $Jsim (x, z) =$ |**x** ∩ **z** | |**x** ∪ **z** |
- ‣ Comparisons are element-wise
- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- ► Let's also first assume that both **x** and **z** contain discrete values; these can be binary values (0 or 1), or specific element identifiers
- The Jaccard similarity provides a simple way to compare these observations $Jsim (x, z) =$ |**x** ∩ **z** | |**x** ∪ **z** |
- ‣ Comparisons are element-wise
- \triangleright The Jaccard similarity can (by definition) take values from 0 to 1

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- ► Let's also first assume that both **x** and **z** contain discrete values; these can be binary values (0 or 1), or specific element identifiers
- The Jaccard similarity provides a simple way to compare these observations $Jsim (x, z) =$ |**x** ∩ **z** | |**x** ∪ **z** |
- ‣ Comparisons are element-wise
- \triangleright The Jaccard similarity can (by definition) take values from 0 to 1
- \triangleright It can be turned to a distance metric: Jdist $(\mathbf{x}, \mathbf{z}) = 1 J\sin(\mathbf{x}, \mathbf{z})$

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- ► Let's also first assume that both **x** and **z** contain discrete values; these can be binary values (0 or 1), or specific element identifiers
- The Jaccard similarity provides a simple way to compare these observations $Jsim (x, z) =$ |**x** ∩ **z** | |**x** ∪ **z** |
- ‣ Comparisons are element-wise
- \triangleright The Jaccard similarity can (by definition) take values from 0 to 1
- \triangleright It can be turned to a distance metric: Jdist $(\mathbf{x}, \mathbf{z}) = 1 J\sin(\mathbf{x}, \mathbf{z})$

• if
$$
\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \end{bmatrix}
$$
 then $\text{Jsim}(\mathbf{x}, \mathbf{z}) =$
 $\mathbf{z} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$

 $= 1/6$ and Jdist $(x, z) = 5/6$

$\overline{\text{Clustering}} - \text{Distance}/\overline{\text{similarity functions}}$

$Clustering - Distance / similarity functions$

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- \blacktriangleright Let's now assume that both **x** and $\mathbf{z} \in \mathbb{R}^n$

$Clustering – Distance / similarity functions$

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- \blacktriangleright Let's now assume that both **x** and $\mathbf{z} \in \mathbb{R}^n$
- ► Recall the L_p -norm definition: $||\mathbf{x}||_p$ $=$ $\left\{$

n ∑ *i*=1 $|x_i|$ *p* $\overline{}$ 1 *p*

- ‣ Let's assume we want to compare two *n*-dimensional observations, **x** and **^z**
- \blacktriangleright Let's now assume that both **x** and $\mathbf{z} \in \mathbb{R}^n$
- ► Recall the L_p -norm definition: $||\mathbf{x}||_p$ $=$ $\left\{$
- we want to compare this is also known as the **Minkowski distance** $L_p(\mathbf{x}, \mathbf{z}) = (|x_1 - z_1|^p + |x_2 - z_2|^p + \dots + |x_n - z_n|^p)$

$Clustering – Distance / similarity functions$

COMP0084 - Intro to ML 89

$$
\sum_{i=1}^{n} |x_i|^p
$$

 \triangleright Popular distance measures stem from this $-$ the input now is the difference of the vectors

$$
\dots + |x_n - z_n|^p \big)^{1/p} = ||\mathbf{x} - \mathbf{z}||_p
$$

$\overline{\text{Clustering}} - \text{Distance}/\overline{\text{similarity functions}}$

- \blacktriangleright Let's assume we want to compare two *n*-dimensional observations, **x** and $\mathbf{z} \in \mathbb{R}^n$
- ‣ **Minkowski distance** $L_p(\mathbf{x}, \mathbf{z}) = (|x_1 - z_1|^p + |x_2 - z_2|^p + \dots + |x_n - z_n|^p)$
- \triangleright For different values of $p \in \mathbb{N}_{>0}$ we can obtain common distance functions

$$
\dots + |x_n - z_n|^p \big)^{1/p} = ||\mathbf{x} - \mathbf{z}||_p
$$

- \blacktriangleright Let's assume we want to compare two *n*-dimensional observations, **x** and $\mathbf{z} \in \mathbb{R}^n$
- ‣ **Minkowski distance** $L_p(\mathbf{x}, \mathbf{z}) = (|x_1 - z_1|^p + |x_2 - z_2|^p + \dots + |x_n - z_n|^p)$
- ► For different values of $p \in \mathbb{N}_{>0}$ we can obtain common distance functions
- \blacktriangleright $p = 1$, Manhattan or **city block distance** or L_1 -norm L_1 (**x**, **z**) = $|x_1 - z_1| + |x_2 - z_2| + ... + |x_n - z_n|$

$$
\dots + |x_n - z_n|^p \big)^{1/p} = ||\mathbf{x} - \mathbf{z}||_p
$$

- \blacktriangleright Let's assume we want to compare two *n*-dimensional observations, **x** and $\mathbf{z} \in \mathbb{R}^n$
- ‣ **Minkowski distance** $L_p(\mathbf{x}, \mathbf{z}) = (|x_1 - z_1|^p + |x_2 - z_2|^p + \dots + |x_n - z_n|^p)$
- ► For different values of $p \in \mathbb{N}_{>0}$ we can obtain common distance functions
- \blacktriangleright $p = 1$, Manhattan or city block distance L_1 (**x**, **z**) = $|x_1 - z_1| + |x_2 - z_2| + ...$
- \blacktriangleright $p = 2$, **Euclidean distance** or L_2 -norm $L_2(\mathbf{x}, \mathbf{z}) = |(x_1 - z_1)|$ 2 $+ (x_2 - z_2)$ 2 $+ ... + (x_n - z_n)$

$$
\dots + |x_n - z_n|^p \big)^{1/p} = ||\mathbf{x} - \mathbf{z}||_p
$$

or
$$
L_1
$$
-norm
+ $|x_n - z_n|$

$$
-z_n^2\bigg]^{1/2} = \sqrt{(x_1 - z_1)^2 + (x_2 - z_2)^2 + \dots + (x_n - z_n)^2}
$$

$\overline{\text{Clustering}} - \text{Distance}/\overline{\text{similarity functions}}$

- \blacktriangleright Let's assume we want to compare two *n*-dimensional observations, **x** and $\mathbf{z} \in \mathbb{R}^n$
- ‣ **Minkowski distance** $L_p(\mathbf{x}, \mathbf{z}) = (|x_1 - z_1|^p + |x_2 - z_2|^p + \dots + |x_n - z_n|^p)$
- For different values of $p \in \mathbb{N}_{>0}$ we can obtain common distance functions

$$
\ldots + |x_n - z_n|^p)^{1/p} = ||\mathbf{x} - \mathbf{z}||_p
$$

- \blacktriangleright Let's assume we want to compare two *n*-dimensional observations, **x** and $\mathbf{z} \in \mathbb{R}^n$
- ‣ **Minkowski distance** $L_p(\mathbf{x}, \mathbf{z}) = (|x_1 - z_1|^p + |x_2 - z_2|^p + \dots + |x_n - z_n|^p)$
- \triangleright For different values of $p \in \mathbb{N}_{>0}$ we can obtain common distance functions
- \triangleright We can also define weighted distances, if we want to give more importance to certain features, e.g.

$$
\dots + |x_n - z_n|^p)^{1/p} = ||\mathbf{x} - \mathbf{z}||_p
$$

$$
L_2(\mathbf{x}, \mathbf{z}) = \sqrt{w_1 (x_1 - z_1)^2 + w_2 (x_2 - z_2)^2 + \dots + w_n (x_n - z_n)^2}
$$

- \triangleright There exists a plethora of different approaches to clustering — relation between objects and classes (exclusive vs. overlapping) — relation between classes and classes (ordered vs. flat)
- \triangleright Today we are going to see the clustering algorithm k -means: driven by the relationship to k -near also it has a least three clusters were constant to a least three clusters were constant to the set of the set of cluster representatives (or means), partitional clustering algorithm
- \triangleright *k*-means constructs a partition of a set of *n* features (objects) into a set of *k* clusters — each object belongs to exactly one cluster (hard clustering)
	- $-$ the number of clusters (k) is a setting given in advance

Clustering — *k*-means

- ► Let's assume we have a set of n m -dimensional observations, i.e. a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ — the number of dimensions = number of features (*m*)
	-
	- $-$ a feature i is represented by the i -th column of \mathbf{X} , the n -dimensional vector $\mathbf{x}_{:,i}$
	- $-$ we want to partition the m features (or columns) of $\mathbf X$ into k clusters

- ► Let's assume we have a set of n m -dimensional observations, i.e. a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ — the number of dimensions = number of features (*m*)
	- $-$ a feature i is represented by the i -th column of \mathbf{X} , the n -dimensional vector $\mathbf{x}_{:,i}$
	- $-$ we want to partition the m features (or columns) of $\mathbf X$ into k clusters
- 1. Randomly set k data points (seed observations) to be the initial cluster centres. We call these centres **centroids** and in practice they are n -dimensional vectors (same size as the columns of X). Centroid j is denoted by **X**). Centroid j is denoted by $\mathbf{c}_j \in \mathbb{R}^n$

- ► Let's assume we have a set of n m -dimensional observations, i.e. a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ — the number of dimensions = number of features (*m*)
	- $-$ a feature i is represented by the i -th column of \mathbf{X} , the n -dimensional vector $\mathbf{x}_{:,i}$
	- $-$ we want to partition the m features (or columns) of $\mathbf X$ into k clusters
- 1. Randomly set k data points (seed observations) to be the initial cluster centres. We call these centres **centroids** and in practice they are n -dimensional vectors (same size as the columns of X). Centroid j is denoted by **X**). Centroid j is denoted by $\mathbf{c}_j \in \mathbb{R}^n$
- 2. Assign each feature (*column*) $X_{i,i}$ to its closest centroid c_j

- ► Let's assume we have a set of n m -dimensional observations, i.e. a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ — the number of dimensions = number of features (*m*)
	- $-$ a feature i is represented by the i -th column of \mathbf{X} , the n -dimensional vector $\mathbf{x}_{:,i}$
	- $-$ we want to partition the m features (or columns) of $\mathbf X$ into k clusters
- 1. Randomly set k data points (seed observations) to be the initial cluster centres. We call these centres **centroids** and in practice they are n -dimensional vectors (same size as the columns of X). Centroid j is denoted by **X**). Centroid j is denoted by $\mathbf{c}_j \in \mathbb{R}^n$
- 2. Assign each feature (*column*) $X_{i,i}$ to its closest centroid c_j
- 3. Re-compute centroids by averaging across their members

- ► Let's assume we have a set of n m -dimensional observations, i.e. a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ — the number of dimensions = number of features (*m*)
	- $-$ a feature i is represented by the i -th column of \mathbf{X} , the n -dimensional vector $\mathbf{x}_{:,i}$
	- $-$ we want to partition the m features (or columns) of $\mathbf X$ into k clusters
- 1. Randomly set k data points (seed observations) to be the initial cluster centres. We call these centres **centroids** and in practice they are n -dimensional vectors (same size as the columns of X). Centroid j is denoted by **X**). Centroid j is denoted by $\mathbf{c}_j \in \mathbb{R}^n$
- 2. Assign each feature (*column*) $X_{i,i}$ to its closest centroid c_j
- 3. Re-compute centroids by averaging across their members
- 4. If a convergence criterion is not met (*see next slide!*), go back to step 2

Clustering — *k*-means convergence criteria

Clustering — *k*-means convergence criteria

‣ no or minimum re-assignments of data points to different clusters

Clustering — *k*-means convergence criteria

- no or minimum re-assignments of data points to different clusters
- ‣ no or minimum change of centroids
- no or minimum re-assignments of data points to different clusters
- ‣ no or minimum change of centroids
- \triangleright minimum decrease in the following cost function $-$ the distance of all features from their centroids has converged to a minimum (C_j denotes cluster j)

$$
\sum_{j=1}^{k} \sum_{\mathbf{x}_{:,i} \in C_j} \text{dist}\big(\mathbf{x}_{:,i}, \mathbf{c}_j\big)
$$

- no or minimum re-assignments of data points to different clusters
- ‣ no or minimum change of centroids
- \triangleright minimum decrease in the following cost function $-$ the distance of all features from their centroids has converged to a minimum (C_i) denotes cluster *j*)

 \triangleright we can use different distance functions, the most common being the Euclidean distance squared, i.e.

$$
\sum_{j=1}^{k} \sum_{\mathbf{x}_{:,i} \in C_j} \text{dist}\big(\mathbf{x}_{:,i}, \mathbf{c}_j\big)
$$

$$
\sum_{j=1}^{k} \sum_{\mathbf{x}_{:,i} \in C_j} ||\mathbf{x}_{:,i} - \mathbf{c}_j||_2^2
$$

- ‣ Strengths
	- simple implementation
	- $-$ efficient, time complexity $\mathscr{O}\bigl(t\cdot k\cdot n\bigr)$, t number of iterations, k clusters, n observations
	- finds a local optimum
	- *no definitive evidence that any other cluster algorithm performs better* (hard to evaluate!)
- ‣ Weaknesses
	- $-$ we need to specify k (the number of clusters)
	- sensitive to outliers
	- sensitive to initialisation
- ‣ Workarounds / improvements
	-
	- multiple runs with different initialisations $-$ non random initialisation, centroids set to the most distant observations (k -means++)

- ‣ Back to our web search activity data set
- \blacktriangleright 150 web search queries that are used to model flu rates in England
- ► Weekly frequency for 674 weeks, i.e. $\mathbf{X} \in \mathbb{R}_{\geq 0}^{674 \times 150}$
- $70\,\%$ of the data's variance
- ► So, actually clustering applied on a matrix $\mathbf{Z} \in \mathbb{R}^{2 \times 150}$

≥0

• Caveat / warning: To visualise the k -means clusters in a 2-dimensional space, I am using k the two principal components (PCA; PCA is explained in [nature.com/articles/nmeth.4346](https://www.nature.com/articles/nmeth.4346) and many textbooks and online references) of $\mathbf{X};$ not great in this example because they explain \sim

• $k = 2$

COMP0084 - Intro to ML 97

- ‣ clusters are denoted by C *i*
- ‣ a cross is used to denote each cluster's centroid

• $k = 2$

 $COMPOO84$ - Intro to ML 98

- ‣ clusters are denoted by C *i*
- ‣ a cross is used to denote each cluster's centroid
- ‣ which search queries are closer to their cluster's centroid?

COMP0084 - Intro to ML 99

Most central queries

‣ **C1**:

"cough remedy" "symptoms of bronchitis" "lemsip" "get rid of a cough"

‣ **C2**:

"signs of flu" "flu symptoms uk" "flu signs" "symptom of flu"

• $k = 3$

COMP0084 - Intro to ML 100

- ‣ clusters are denoted by C *i*
- ‣ a cross is used to denote each cluster's centroid

$\blacktriangleright k=3$

 $COMPOO84$ - Intro to ML and the set of the set o

- ‣ clusters are denoted by C *i*
- ‣ a cross is used to denote each cluster's centroid
- ‣ which search queries are closer to their cluster's centroid?
- \rightarrow does the addition of a cluster change the thematic coverage of the revised clusters?
- ‣ central queries have changed

COMP0084 - Intro to ML 102

- ‣ **C1**: "chest infection symptoms", "coughs", "bronchitis", "cough remedies"
- ‣ **C2**: "how long does flu last", "food for flu", "is flu contagious", "how to get rid of the flu"
- ‣ **C3**: "have I got flu", "flu contagious period", "flu in babies", "what are the symptoms of flu"

COMP0084 - Intro to ML 103

- ‣ clusters are denoted by C *i*
- ‣ a cross is used to denote each cluster's centroid
- ‣ which search queries are closer to their cluster's centroid?
- \rightarrow does the addition of a cluster change the thematic coverage of the revised clusters?
- ‣ central queries have changed

$$
\bullet \quad k=4
$$

 $COMPOO84$ - Intro to ML 204

- ‣ clusters are denoted by C *i*
- a cross is used to denote each cluster's centroid
- ‣ which search queries are closer to their cluster's centroid?
- \rightarrow does the addition of a cluster change the thematic coverage of the revised clusters?
- ‣ central queries have changed — *partially!*

COMP0084 - Intro to ML 105

- ‣ **C1**: "flu contagious period", "flu in babies", "what are the symptoms of flu", "have i got flu"
- ‣ **C2**: "flu how long", "how long is flu contagious", "how long does a flu last", "how long to recover from flu"
- ‣ **C3**: "get rid of a cough", "lemsip", "cough remedy", "flu aches"
- ‣ **C4**: "catarrh", "lurgy", "pleurisy", "coughing blood"
- ‣ **C5**: "cough flu", "flu diarrhea", "difference between cold and flu", "flu symptoms last"

Topic models and vector semantics (*word embeddings***)**

‣ February 28 (2 hours)

Modelling COVID-19 using web search activity

• March 20 (1 hour)