
@lampos

Information Retrieval & Data Mining [COMP0084]

Text processing and indexing

Vasileios Lampos

Computer Science, UCL

🖥 lampos.net

https://twitter.com/lampos
https://lampos.net

Preliminaries — About me!

2

‣ Associate Professor at the Computer Science department (2021)

‣ Ph.D. in Computer Science from the University of Bristol (2012)

‣ Been @ UCL Computer Science for almost a decade

‣ Main research theme: Machine learning and natural language processing methods for health-
related tasks

‣ Information about my research at my personal / academic website: lampos.net

‣ Publications: scholar.google.com/citations?user=eXDONDEAAAAJ

‣ Tweets about research and society at: twitter.com/lampos

‣ Originally from Greece, but in the UK for more than 15 years

COMP0084 - Text processing and indexing@lampos

https://lampos.net
https://scholar.google.com/citations?user=eXDONDEAAAAJ
https://twitter.com/lampos
https://twitter.com/lampos

Preliminaries — PhD studentship(s) at UCL Computer Science

3

‣ EPSRC DTP fully-funded studentship (home & international students)

— Apply ASAP, deadline in January 26, 2023

— PhD project(s) description: ucl-epsrc-dtp.github.io/2023-24-project-catalogue/projects/2228bd1193.html

— Apply @ ucl.ac.uk/epsrc-doctoral-training/prospective-students/apply-ucl-epsrc-dtp-studentship

‣ Foundational AI CDT fully-funded studentship (home students only)

— Please get in touch via email to discuss your project proposal

— Application deadlines in March and June, 2023

— Apply @ ucl.ac.uk/foundational-ai-cdt/

‣ General UCL Computer Science PhD studentship (home & international students)

— Please get in touch via email to discuss your project proposal

— Funding not yet guaranteed; funding decision to be made in April 2023

— Apply @ ucl.ac.uk/prospective-students/graduate/research-degrees/computer-science-4-year-programme-mphil-phd

COMP0084 - Text processing and indexing@lampos

https://ucl-epsrc-dtp.github.io/2023-24-project-catalogue/projects/2228bd1193.html
https://www.ucl.ac.uk/epsrc-doctoral-training/prospective-students/apply-ucl-epsrc-dtp-studentship
https://www.ucl.ac.uk/foundational-ai-cdt/
https://www.ucl.ac.uk/prospective-students/graduate/research-degrees/computer-science-4-year-programme-mphil-phd
https://twitter.com/lampos

Preliminaries — PhD studentship(s) at UCL Computer Science

4

‣ Research topics

— machine (deep) learning, artificial intelligence

— natural language processing

— health-related tasks

‣ Example: Models for influenza and COVID-19 based on
Google search activity

— Flu detector, fludetector.cs.ucl.ac.uk

— COVID-19, covid.cs.ucl.ac.uk

— Both solutions are part of the national health

surveillance in the UK, i.e. used by UKHSA

‣ More information @ lampos.net/join-us

COMP0084 - Text processing and indexing@lampos

https://fludetector.cs.ucl.ac.uk
https://covid.cs.ucl.ac.uk
https://lampos.net/join-us
https://twitter.com/lampos

Preliminaries — A few words about me and COMP0084 or IRDM

5

‣ Will do ~30% of COMP0084’s lectures and will host 1 or 2 guest lectures

‣ Will run, support (office hours, email), and mark (with potentially minor support from teaching
assistants) Coursework 1 which is 50% of the final mark

‣ Will not be involved with Coursework 2 at all

‣ Not the module lead, hence when “in crisis” please email or cc Prof. Ingemar Cox

COMP0084 - Text processing and indexing@lampos

https://twitter.com/lampos

Preliminaries — About this lecture

6

‣ In this lecture:

— basic text processing steps

— inverted index

— Zipf’s law, Heaps’ law (text statistics)

— brief overview of Coursework 1

‣ NB: Topics discussed in this lecture are very relevant to Coursework 1

‣ Some material can be found in (plus a great resource for further reading): 
Chapters 1, 2, and section 5.1 of the [IIR] book: “An Introduction to Information Retrieval” by
Manning, Raghavan, and Schütze (2009) — nlp.stanford.edu/IR-book/information-retrieval-book.html

COMP0084 - Text processing and indexing@lampos

https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://twitter.com/lampos

Text processing — Applica,ons

7

‣ Search engines

‣ Advertising

‣ Autocorrection, autocompletion, grammar check

‣ Machine translation

‣ Chatbots

‣ Email filters (spam, categorisation)

‣ Text-driven analytics (sentiment, opinions, health)

‣ News (topic models, summarisation)

COMP0084 - Text processing and indexing@lampos

https://twitter.com/lampos

Text processing — Basic steps

8COMP0084 - Text processing and indexing@lampos

Parsing *

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

Document unit

‣ Document unit 
book, book chapter, news article,
paragraph, sentence, tweet,  
search query, fixed window of terms

‣ Depending on the task and the
machine learning methods that are
going to be deployed some
processing steps are not applicable
or may not be required

‣ The order in this diagram is not
necessarily rigid (e.g. parsing can
also take place after tokenisation)

https://twitter.com/lampos

Text processing — Parsing & tokenisa,on

9

‣ Parsing 
— if the file is not raw text, e.g. JSON, HTML 
— identify structural elements (e.g. titles, links, headings)

‣ Tokenisation 
the task of chopping up a document unit into pieces, called tokens 
 

Sentence: “They won’t let you fly, but they might let you sing.” 
 

Tokens: [They] [won’t] [let] [you] [fly] [,] [but] [they] [might] [let] [you] [sing] [.]

‣ Tokens need to be turned to terms, i.e. processed tokens that will be
maintained in our vocabulary index

‣ Not necessarily an easy task even for English and definitely harder in
some other languages: punctuation, hyphens, capitalisation, numbers,
separators, segmentation (where does a word end)

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

https://twitter.com/lampos

Text processing — Normalisa,on

10

‣ Normalisation 
the process of canonicalising tokens so that during indexing matches
occur despite of superficial differences in the character sequences

‣ Try to group tokens with minor differences caused by the use of
punctuation, diacritics, accents, hyphens 
“U.K.” ~ “UK” “naïve” ~ “naive” 
“don’t” ~ “dont” “co-exist” ~ “coexist”

‣ Maintain upper case, establish a conditional upper case, or lower case
everything? 
“Windows” the operating system vs. “windows” in a house 
“Bill” the name vs. “bill” the check

‣ Hard task to get right — the type of each token needs to be known

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

https://twitter.com/lampos

Text processing — Stop word removal

11

‣ Stop words 
extremely common (very frequent) words that do not add to the meaning
of a document unit, but exact definition depends on the set of decisions
we make (linked to the target task) in order to identify stop words. 
 
Examples: “the”, “an”, “to”, “so”, “then” 
 
Benefits: reduces number of features / dimensionality and helps derive
models that can generalise better, saves storage / memory space
(perhaps not very relevant nowadays) 

 
Issues: might remove some meaning from the text 
e.g. “flights to London” — if we remove “to” as a stop word, then we don’t
know whether this text snippet is about flights “to” or “from” London

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

https://twitter.com/lampos

Text processing — Stop word removal

12

‣ Could be determined using a predefined list and/or automatically, e.g.
the most frequent terms in very large corpus

‣ Bag-of-words models (each term is considered in isolation) could benefit
from stop word removal, but modern language models (e.g. BERT or GPT
variants) might not as stop words can add to the semantic interpretation
of text

‣ Should we remove stop words? Depends on the method used and the
target task. Most of the times the downstream task accuracy can be
measured, and we can actually see whether removing stop words helps
or not and how much.

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

https://twitter.com/lampos

Text processing — Lemma,sa,on

13

‣ Lemmatisation 
Returns the base (dictionary) form of a word, which is known as the
lemma. 
 

“organises” or “organising” to “organise” 
“cars” to “car” 
“saw” to “see” (if “saw” is a verb)

‣ Does things “properly”, i.e. requires a complete vocabulary and
morphological analysis (needs to know what part of speech is the target
word for example), aiming to remove inflectional endings only 

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

https://twitter.com/lampos

Text processing — Stemming

14

‣ Stemming 
Crude heuristic process that uses a stemmer (stemming algorithm) in an
attempt to reduce inflected (or derived) words / tokens to their word
stem (root form) — the stem, i.e. the output of a stemmer is very often
not a vocabulary word 
 

“cars” to “car” 
“organises” or “organising” to “organis” 
“story” or “stories” to “stori”

‣ Most common algorithms: Porter and Porter 2 (snowball) stemmer 
tartarus.org/martin/PorterStemmer 
snowball.tartarus.org/algorithms/english/stemmer.html 
follows a set of complex rules (easier to deploy than a lemmatiser) 
removes the most common morphological and inflexional endings from
words / tokens 

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

https://tartarus.org/martin/PorterStemmer/
http://snowball.tartarus.org/algorithms/english/stemmer.html
https://twitter.com/lampos

Text processing — Lemma,sa,on & stemming

15

‣ Do lemmatisation and/or stemming significantly improve the accuracy in
downstream tasks? 
— Not necessarily, at most very modest benefits for English 
— Stemming helps other languages though such as German

‣ Increase recall while harming precision, i.e. we will most definitely obtain
all relevant documents, but together with them we will also obtain many
irrelevant ones 
 

query: “operating” AND “system” 
 

if we assume Porter stemming is applied this will return documents that
have the stems “oper” AND “system” 
 

however, this includes documents with the words “operational” AND
“system” that are not a good match

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

https://twitter.com/lampos

Text processing — Vocabulary

16

‣ Finally, we obtain a vocabulary, an index of unique terms that
either proper words or derived non-vocabulary terms

‣ Optionally, we can further remove very rare terms, e.g. the ones
that appear only one time

COMP0084 - Text processing and indexing@lampos

Parsing

Tokenisation

Stop word removal *

Stemming *

Normalisation

Lemmatisation *

* optional

Vocabulary

Collection of
document units

https://twitter.com/lampos

Text processing — Inverted index

17

‣ Index 
A common way to think about an index is that a document in our collection will be
represented as a set of indices of the terms in it. Hence: 
document —> terms —> index of terms in our vocabulary

‣ Inverted index 
works the other way around, hence the “inverted” connotation 
terms in our vocabulary —> list of documents in our collection they appear in 
 

Fair to say that “inverted” could be considered as redundant — we are not really inverting
anything, and it is actually a common way of indexing. 
 

Why use it: improves search / retrieval speed 
NB: storage overhead, additional cost for adding / removing / updating documents

‣ Apart from a document index, an inverted index could also hold additional information 
— number of times (count) the term appears in a certain document 
— position in the document the term appears at

COMP0084 - Text processing and indexing@lampos

https://twitter.com/lampos

Text processing — Inverted index, an example

18COMP0084 - Text processing and indexing@lampos

D1: And you run and you run to catch up with the sun, but it is
sinking, racing around to come up behind you again.

D2: In my rear view mirror the sun is going down, sinking behind
bridges in the road.

D3: One day you find ten years have got behind you. No one told
you when to run, you missed the starting gun.

https://twitter.com/lampos

Text processing — Inverted index, an example

19COMP0084 - Text processing and indexing@lampos

again: 1

and: 1

around: 1

behind: 1,2,3

bridges: 2

but: 1

catch: 1

come: 1

day: 3

down: 2

find: 3

going: 2

got: 3

gun: 3

have: 3

in: 2

is: 1,2

it: 1

mirror: 2

missed: 3

my: 2

no: 3

one: 3

racing: 1

rear: 2

road: 2

run: 1,3

sinking: 1,2

starting: 3

sun: 1,2

ten: 3

the: 1,2,3

to: 1,3

told: 3

up: 1

view: 2

when: 3

with: 1

years: 3

you: 1,3

D1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
D2: In my rear view mirror the sun is going down, sinking behind bridges in the road.

D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

https://twitter.com/lampos

Text processing — Inverted index, an example

20COMP0084 - Text processing and indexing@lampos

again: 1

and: 1

around: 1

behind: 1,2,3

bridges: 2

but: 1

catch: 1

come: 1

day: 3

down: 2

find: 3

going: 2

got: 3

gun: 3

have: 3

in: 2

is: 1,2

it: 1

mirror: 2

missed: 3

my: 2

no: 3

one: 3

racing: 1

rear: 2

road: 2

run: 1,3

sinking: 1,2

starting: 3

sun: 1,2

ten: 3

the: 1,2,3

to: 1,3

told: 3

up: 1

view: 2

when: 3

with: 1

years: 3

you: 1,3

D1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
D2: In my rear view mirror the sun is going down, sinking behind bridges in the road.

D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

https://twitter.com/lampos

Text processing — Inverted index, an example

21COMP0084 - Text processing and indexing@lampos

again: 1

and: 1

around: 1

behind: 1,2,3

bridges: 2

but: 1

catch: 1

come: 1

day: 3

down: 2

find: 3

going: 2

got: 3

gun: 3

have: 3

in: 2

is: 1,2

it: 1

mirror: 2

missed: 3

my: 2

no: 3

one: 3

racing: 1

rear: 2

road: 2

run: 1,3

sinking: 1,2

starting: 3

sun: 1,2

ten: 3

the: 1,2,3

to: 1,3

told: 3

up: 1

view: 2

when: 3

with: 1

years: 3

you: 1,3

D1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
D2: In my rear view mirror the sun is going down, sinking behind bridges in the road.

D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

https://twitter.com/lampos

Text processing — Inverted index, an example (term’s count)

22COMP0084 - Text processing and indexing@lampos

again: 1:1

and: 1:2

around: 1:1

behind: 1:1,2:1,3:1

bridges: 2:1

but: 1:1

catch: 1:1

come: 1:1

day: 3:1

down: 2:1

find: 3:1

going: 2:1

got: 3:1

gun: 3:1

have: 3:1

in: 2:2

is: 1:1,2:1

it: 1:1

mirror: 2:1

missed: 3:1

my: 2:1

no: 3:1

one: 3:2

racing: 1:1

rear: 2:1

road: 2:1

run: 1:2,3:1

sinking: 1:1,2:1

starting: 3:1

sun: 1:1,2:1

ten: 3:1

the: 1:1,2:2,3:1

to: 1:2,3:1

told: 3:1

up: 1:2

view: 2:1

when: 3:1

with: 1:1

years: 3:1

you: 1:3,3:4

D1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
D2: In my rear view mirror the sun is going down, sinking behind bridges in the road.

D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

https://twitter.com/lampos

Text processing — Inverted index, an example (term’s count)

23COMP0084 - Text processing and indexing@lampos

again: 1:1

and: 1:2

around: 1:1

behind: 1:1,2:1,3:1

bridges: 2:1

but: 1:1

catch: 1:1

come: 1:1

day: 3:1

down: 2:1

find: 3:1

going: 2:1

got: 3:1

gun: 3:1

have: 3:1

in: 2:2

is: 1:1,2:1

it: 1:1

mirror: 2:1

missed: 3:1

my: 2:1

no: 3:1

one: 3:2

racing: 1:1

rear: 2:1

road: 2:1

run: 1:2,3:1

sinking: 1:1,2:1

starting: 3:1

sun: 1:1,2:1

ten: 3:1

the: 1:1,2:2,3:1

to: 1:2,3:1

told: 3:1

up: 1:2

view: 2:1

when: 3:1

with: 1:1

years: 3:1

you: 1:3,3:4

query: sun AND is AND going AND up 
 {1:1, 2:1} + {1:1, 2:1} + {2:1} + {1:2} => D1:4, D2:3, D3:0 
 

Hence the response to this query (ranked list of documents) by using a very naive retrieval approach
would be D1, then D2, then D3.

https://twitter.com/lampos

Text processing — Inverted index, an example (term’s posi?on)

24COMP0084 - Text processing and indexing@lampos

again: 1:24

and: 1:1, 1:4

around: 1:18

behind: 1:22, 2:12,3:9

bridges: 2:13

but: 1:13

catch: 1:8

come: 1:20

day: 3:2

down: 2:10

find: 3:4

going: 2:9

got: 3:8

gun: 3:22

have: 3:7

in: 2:1, 2:14

is: 1:15, 2:8

it: 1:14

mirror: 2:5

missed: 3:19

my: 2:2

no: 3:11

one: 3:1, 3:12

racing: 1:17

rear: 2:3

road: 2:16

run: 1:3, 1:6, 
 3:17

sinking: 1:16, 2:11

starting: 3:21

sun: 1:12, 2:7

ten: 3:5

the: 1:11, 2:6, 2:15  
 3:20

to: 1:7, 1:19, 3:16

told: 3:13

up: 1:9, 1:21

view: 2:4

when: 3:15

with: 1:10

years: 3:6

you: 1:2, 1:5, 1:23,  
 3:3, 3:10, 3:14,  
 3:18

D1: And you run and you run to catch up with the sun, but it is sinking, racing around to come up behind you again.
D2: In my rear view mirror the sun is going down, sinking behind bridges in the road.

D3: One day you find ten years have got behind you. No one told you when to run, you missed the starting gun.

https://twitter.com/lampos

Text sta,s,cs — Zipfian distribu,on

25

‣ Power law, named after linguist G. K. Zipf

‣ [top] The (normalised) frequency of a variable  
is inversely related to the variable’s frequency  
rank in a set of variables, controlled by  
parameter .

‣ [right] The log-log plot of the probability mass  
function (PMF) defined for (discrete) values of  
for , and .

f(k; s, N) =
k−s

∑N
i=1 i−s

(f)
(k) N

s ≥ 0

k
s = {1,2,3,4} N = 10

COMP0084 - Text processing and indexing@lampos

Source: Wikipedia (en.wikipedia.org/wiki/Zipf%27s_law)

https://twitter.com/lampos
https://en.wikipedia.org/wiki/Zipf%27s_law

Text sta,s,cs — Zipf’s law

26

Zipfian distribution:

Zipf’s law sets , hence:

‣ a few words occur very often, and many words hardly ever occur

‣ Zipf’s law characterises the frequency distribution of terms in a (large) collection of
documents (corpus)

‣ Specifically, it suggests that the rank of a term times its frequency is constant

f(k; s, N) =
k−s

∑N
i=1 i−s

s = 1 f(k; N) =
1

k ∑N
i=1 i−1

HN

(k * f)

COMP0084 - Text processing and indexing@lampos

https://twitter.com/lampos

Text sta,s,cs — Zipf’s law, an example

27

‣ Based on the Twitter data
used in a paper of ours 
aclanthology.org/E14-1043.pdf

‣ ~50 million tweets

‣ 71,555 terms in the
vocabulary

‣ Top-40 terms based on their
normalised frequency

‣ μ(rank*frequency) = 0.036 
σ(rank*frequency) = 0.021

COMP0084 - Text processing and indexing@lampos

word rank frequency rank*frequency
the 1 0.03145 0.03145
to 2 0.02441 0.04882
a 3 0.02224 0.06672
i 4 0.01976 0.07903

you 5 0.01418 0.07091
and 6 0.01384 0.08306
in 7 0.01347 0.09427
of 8 0.01285 0.10281
for 9 0.01228 0.11055
is 10 0.01108 0.11076
on 11 0.01103 0.12133
it 12 0.00985 0.11826

my 13 0.00933 0.12131
at 14 0.00638 0.08930

that 15 0.00633 0.09498
with 16 0.00621 0.09933
be 17 0.00584 0.09923

this 18 0.00581 0.10457
me 19 0.00574 0.10903

have 20 0.00567 0.11332

word rank frequency rank*frequency
just 21 0.00548 0.11510
so 22 0.00493 0.10850
not 23 0.00446 0.10259
are 24 0.00432 0.10358

your 25 0.00426 0.10652
out 26 0.00407 0.10980
was 27 0.00402 0.11256
but 28 0.00398 0.11531
all 29 0.00386 0.11569
up 30 0.00385 0.11924

good 31 0.00358 0.11460
get 32 0.00357 0.11779
like 33 0.00349 0.11859

from 34 0.00341 0.11924
what 35 0.00332 0.11945
now 36 0.00329 0.12182
do 37 0.00318 0.12086

today 38 0.00297 0.11594
if 39 0.00296 0.11846

new 40 0.00290 0.11875
0.02 0.04 0.06 0.08 0.1 0.12 0.14

frequency * rank

0

5000

10000

15000

N
um

be
r o

f t
er

m
s

https://aclanthology.org/E14-1043.pdf
https://twitter.com/lampos

Text sta,s,cs — Zipf’s law, an example

28

‣ probability of occurrence (normalised frequency) of a term vs. the term’s ranking

‣ all 71,555 terms (lef), top-1000 most frequent terms (right)

‣ practice seems to be following theory, but from these plots it is quite unclear

COMP0084 - Text processing and indexing@lampos

0 1 2 3 4 5 6 7
Term frequency ranking #104

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Te

rm
 p

ro
b.

 o
f o

cc
ur

re
nc

e

data
theory (Zipf's law)

0 200 400 600 800 1000
Term frequency ranking

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Te
rm

 p
ro

b.
 o

f o
cc

ur
re

nc
e

data
theory (Zipf's law)

https://twitter.com/lampos

Text sta,s,cs — Zipf’s law, an example

29

‣ Log-log plot provides a much
better visual confirmation

‣ Zipf’s law proposes that this
relationship is “constant” (straight
line in the log space)

‣ Practice follows theory quite well,
but not entirely

‣ What will happen to this plot if we
remove stop words from our
vocabulary?

COMP0084 - Text processing and indexing@lampos

100 101 102 103 104 105

Term frequency ranking (log)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Te
rm

 p
ro

b.
 o

f o
cc

ur
re

nc
e

(lo
g)

data
theory (Zipf's law)

https://twitter.com/lampos

Text sta,s,cs — Zipf’s law, an example

30

‣ Zipf’s law suggests that

‣ What is the proportion of terms with a certain
frequency ?

‣ A term that has a frequency has an estimated rank
 and hence the proportion of terms with

frequency higher or equal to is where is the
size of our vocabulary

‣ Similarly, the proportion of terms with a frequency
 is given by

‣ If we set and then Zipf’s law
indicates that our corpus should have 11.9% of terms
within that range (when empirically we have 9.3%)

rank * frequency = C

≥ f ∈ [0,1]
f

kf = C/f
f kf /N N

a ≤ x ≤ b (ka − kb + 1)/N

a = 10−5 b = 10−3

COMP0084 - Text processing and indexing@lampos

word rank frequency rank*frequency
the 1 0.03145 0.03145
to 2 0.02441 0.04882
a 3 0.02224 0.06672
i 4 0.01976 0.07903

you 5 0.01418 0.07091
and 6 0.01384 0.08306
in 7 0.01347 0.09427
of 8 0.01285 0.10281
for 9 0.01228 0.11055
is 10 0.01108 0.11076
on 11 0.01103 0.12133
it 12 0.00985 0.11826

my 13 0.00933 0.12131
at 14 0.00638 0.08930

that 15 0.00633 0.09498
with 16 0.00621 0.09933
be 17 0.00584 0.09923

this 18 0.00581 0.10457
me 19 0.00574 0.10903

have 20 0.00567 0.11332

https://twitter.com/lampos

Text sta,s,cs — Heaps’ law

31

 or  
 

 is the size of the vocabulary and is the number of tokens 
 

common parameter values: ,

‣ Heaps’ law captures how the size of the vocabulary (unique terms) grows with the size of
the corpus (number of tokens) 
— no upper bound because of typos, novel terms (e.g. social media hashtags) 
— however, new terms occur less frequently as the vocabulary grows 
— still, the vocabulary size will become very large for very large corpora

‣ Heaps’ law can be derived from Zipf’s law by assuming documents are generated by
randomly sampling words from a Zipfian distribution

M = kTβ log(M) = log(k) + β log(T)

M T
k ∈ [10,100] β ∈ [0.4,0.6]

COMP0084 - Text processing and indexing@lampos

https://twitter.com/lampos

Text sta,s,cs — Heaps’ law, an example (IIR, Chapter 5)

32

‣ Corpus: 800K news articles from the
Reuters RCV1 data set 
jmlr.csail.mit.edu/papers/volume5/lewis04a/

‣ Best least squares fit 

‣ Hence and

‣ For the first 1,000,020 tokens Heaps’ law
predicts a vocabulary size of 38,323 terms
— the actual number is 38,365 (very close!)

log10 M = 0.49 × log10 T + 1.64 ⇒
M ≈ 44 T0.49

k = 44 β = 0.49

COMP0084 - Text processing and indexing@lampos

Online edition (c)�2009 Cambridge UP

88 5 Index compression

0 2 4 6 8

0
1

2
3

4
5

6

log10 T

lo
g

1
0

 M

! Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T
(number of tokens) for Reuters-RCV1. For these data, the dashed line log10 M =
0.49 ∗ log10 T + 1.64 is the best least-squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

entities like genes. These names need to be included in the inverted index,
so our users can search for them.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-HEAPS’ LAW

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the
parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for
Heaps’ law is that the simplest possible relationship between collection size
and vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law

Source: Fig. 5.1 of IIR (2009 edition)

https://jmlr.csail.mit.edu/papers/volume5/lewis04a/
https://twitter.com/lampos

Text sta,s,cs — Heaps’ law, another example

33

‣ Vocabulary of size 100,000 — term frequencies follow Zipf’s law

‣ We first draw 25K terms () from the Zipfian distribution of 100,000 terms (recall, we set
). Because we are sampling, the terms we draw most likely are not going to be

unique. We see how many unique terms exist in this draw (). This pair of
variables is our first sample, i.e. number of drawn terms (tokens) and the number of unique
terms, respectively. Then we repeat by increasing the number of terms we draw by 25K
(=50K), and continue doing so until we reach 1.5 million tokens (60 samples obtained).

‣ Best least squares fit in these 60 samples 
 

Hence and

‣ If we assume an exponential relationship between and , then this is captured well by
Heaps’ law.

‣ Optional exercise: Can you replicate this experiment? What can go wrong with this derivation?

T
s = 1

M {T, M}

ln(M) = 0.5107 × ln(T) + 4.252 ⇒ M ≈ 70.248 T0.5107

k = 70.248 β = 0.5107
M T

COMP0084 - Text processing and indexing@lampos

https://twitter.com/lampos

About Coursework 1

34COMP0084 - Text processing and indexing@lampos

‣ 50% of the final mark

‣ Data set: 200 search queries, for each one ≤1,000 passages that were returned

‣ Tasks: text processing and analysis, inverted index implementation, (re-)rank the passages
for each query based on basic retrieval and query likelihood language models

‣ Give extra attention the following

— marking will be partially automated — please follow instructions to the letter!

— Python (recommended), Java (permitted), no notebook submissions, each task asks for

specific output — filename/type, a submission will consist of 10 or 11 files exactly

— your answers will have a level of stochasticity

— do not use external functions that can solve end-to-end the tasks of building an

inverted index, retrieval and language models

— only use unigram (1-gram) text representations

— use the ACL LaTeX template for your report

https://twitter.com/lampos

About Coursework 1 — Ques,ons, support, basic code of conduct

35COMP0084 - Text processing and indexing@lampos

‣ Deadline: March 3, 2023 at 4pm

‣ Q & A about Coursework 1 on February 1, time slot TBA

‣ Office hours: Tuesdays 9-10am starting from Jan. 24, MS Teams, no group calls

‣ Send me an email any time [v.lampos@ucl.ac.uk]

‣ Do not post anything about Coursework 1 on the course’s forum or in any public medium
(to avoid unintentional “spoilers”)

‣ Based on the discussions during the office hours and the emails, I might send
announcements with clarifications to the entire class. These will be posted on the forum,
so please check your emails and the COMP0084 forum regularly.

‣ Do not send me questions about Coursework 2 — this is run by Prof. Emine Yilmaz and a
team of teaching assistants

‣ Marks are expected to be released by April 4, 2023. Please note that if there are many EC
extensions, the mark release date might be delayed (by 1 to 3 weeks).

https://twitter.com/lampos
mailto:v.lampos@ucl.ac.uk

About Coursework 1 — Hints

36COMP0084 - Text processing and indexing@lampos

‣ My not very optimal code that solves Coursework 1 runs on my 1st generation Macbook
Pro M1 (8 CPU/GPU cores, 16GB RAM) in about 12 minutes

‣ Having said that, the inverted index implementation might need some extra care to avoid
getting out-of-memory and some parallelisation to make it fast enough

‣ Please make sure you have access to the right CPU resources (especially for Coursework 2)

‣ I tried to provide very specific instructions for Coursework 1, but please be aware that
further clarifications might be required along the way

https://twitter.com/lampos

Next lectures with me

37COMP0084 - Text processing and indexing@lampos

Q & A about Coursework 1

‣ February 1, time slot TBD

Introduction to machine learning and data mining

‣ February 8 and 9 (3 hours)

Topic models and vector semantics (word embeddings)

‣ Lectures on March 1 and 2 (2 hours)

‣ March 1, 12pm to 1pm, guest lecture by Dr Adam Tsakalidis

Guest lecture by me on modelling COVID-19 using web search activity

‣ March 15, 11am to 12pm

https://twitter.com/lampos

